Preferred Language
Articles
/
jeasiq-89
Use projection pursuit regression and neural network to overcome curse of dimensionality
...Show More Authors

Abstract

This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model the multiple regression as a sum of the nonlinear functions of the linear structures of the variables.

 Two approaches were used to solve the problem curse of dimensionality : the first approach is proposed projection pursuit regression method (PPR)  and The second approach is the method of neural networks (NN) representing by (Back Propagation of error)  which is one of the methods used in reducing dimensions . A simulated study was conducted to compare the methods used. The simulations were based on findings that showed that the method (NN) in this study gave better results than the (PPR) based on RMSE.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
A Nonlinear MIMO-PID Neural Controller Design for Vehicle Lateral Dynamics model based on Modified Elman Neural Network
...Show More Authors

This paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Using Bayesian method to estimate the parameters of Exponential Growth Model with Autocorrelation problem and different values of parameter of correlation-using simulation
...Show More Authors

We have studied Bayesian method in this paper by using the modified exponential growth model, where this model is more using to represent the growth phenomena. We focus on three of prior functions (Informative, Natural Conjugate, and the function that depends on previous experiments) to use it in the Bayesian method. Where almost of observations for the growth phenomena are depended on one another, which in turn leads to a correlation between those observations, which calls to treat such this problem, called Autocorrelation, and to verified this has been used Bayesian method.

The goal of this study is to knowledge the effect of Autocorrelation on the estimation by using Bayesian method. F

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Comparison of Estimation Sonic Shear Wave Time Using Empirical Correlations and Artificial Neural Network
...Show More Authors

Wellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems
...Show More Authors

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
Face Recognition Using Stationary wavelet transform and Neural Network with Support Vector Machine
...Show More Authors

Face recognition is a type of biometric software application that can identify a specific
individual in a digital image by analyzing and comparing patterns. It is the process of
identifying an individual using their facial features and expressions.
In this paper we proposed a face recognition system using Stationary Wavelet Transform
(SWT) with Neural Network, the SWT are applied into five levels for feature facial
extraction with probabilistic Neural Network (PNN) , the system produced good results
and then we improved the system by using two manner in Neural Network (PNN) and
Support Vector Machine(SVM) so we find that the system performance is more better
after using SVM where the result shows the performance o

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use some statistical algorithms in mock hacking satellite image
...Show More Authors

In the recent years, remote sensing applications have a great interest because it's offers many advantages, benefits and possibilities for the applications that using this concept, satellite it's one must important applications for remote sensing, it's provide us with multispectral images allow as study many problems like changing in ecological cover or biodiversity for earth surfers, and illustrated biological diversity of the studied areas by the presentation of the different areas of the scene taken depending on the length of the characteristic wave, Thresholding it's a common used operation for image segmentation, it's seek to extract a monochrome image from gray image by segment this image to two region (for

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
A comparison among Different Methods for Estimating Regression Parameters with Autocorrelation Problem under Exponentially Distributed Error
...Show More Authors

Multiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
The ISLAMIC Banks and its ability to exceed The world Finanical Crisis 2008 (Islamic Dubi Bank)
...Show More Authors

The Recent days witness an in creasing importanc of Islamic Banks which stems from the wide spread in Islamic and non-Islamic countries,Especially in USA and European countries.the consideration in Islamic Banks came after the financial crisis in 2008.Islamic Banks work with conventional banks in most countries,that is,the formers may face the same risks which face the latters,that represent the larger percent of the International Banking system.the problms that may affect Islamic Banks related to many causes,some related to the working in common economic environment.others related to the possibility of simulation to the method of investment and financing in conventional Banks,this mean,the work with principles not compling with

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Intelligent Congestion Control of 5G Traffic in SDN using Dual-Spike Neural Network
...Show More Authors

Software Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF