Preferred Language
Articles
/
jeasiq-848
Comparison between some of linear classification models with practical application
...Show More Authors

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs two groups when the response variable with tow categorise only.

The first form is the linear discriminant function ,The second is the probability form which it is derivative as alternative for the linear discriminant function while the third form is the probability function model. Of the logistic regression the comparison between these methods is based on measure of the probability  of misclassification .We show that the results of the  probability form  of the logistic regression has minimum probability of misclassification through the application on the data of two types of (leukemia).

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Agriculture And Agricultural Science Procedia
Practical Deviation in Sustainable Pesticide Application Process
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between the Methods of Ridge Regression and Liu Type to Estimate the Parameters of the Negative Binomial Regression Model Under Multicollinearity Problem by Using Simulation
...Show More Authors

The problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
Use digital classification to follow change detection of al Razzazah sebkha For the period(1976-2013)
...Show More Authors

The Sebkha is considered the evaporative geomorphological features, where climate plays an active role. It forms part of the surface features in Mesopotamia plain of Iraqi, which is the most fertile lands, and because of complimentary natural and human factors turned most of the arable land to the territory of Sebkha lands. The use satellite image (Raw Data), Landsat 30M Mss for the year 1976 Landsat 7 ETM, and the Landsat 8 for year 2013 (LDCM) for the summer Landsat Data Continuity Mission and perform geometric correction, enhancements, and Subset image And a visual analysis Space visuals based on the analysis of spectral fingerprints earth's This study has shown that the best in the discrimination of Sebkha Remote sensing techniques a

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
"Comparison of Approximate Estimation Methods for Logistics Distribution Teachers"
...Show More Authors

The goal beyond this Research is to review methods that used to estimate Logistic distribution parameters. An exact estimators method which is the Moment method, compared with other approximate estimators obtained essentially from White approach such as: OLS, Ridge, and Adjusted Ridge as a suggested one to be applied with this distribution. The Results of all those methods are based on Simulation experiment, with different models and variety of  sample sizes. The comparison had been made with respect to two criteria: Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).  

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 29 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Personal tax exemptions "a comparative study with some Arab and European system legislations
...Show More Authors

This research aims primarily to highlight personal tax exemptions A comparative study with some Arab and European regulations. And by conducting both theoretical comparative analyses. Most important findings of the study is the need to grant personal and family exemptions that differ according to the civil status of the taxpayer (single or married). In other words, the exemption increases as the number of family members depend on its social sense. Also taking into account some incomes that require a certain effort and looking at the tax rates, it is unreasonable for wages to be subject to the same rates applied to commercial profits.      

View Publication Preview PDF
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
A comparison of the Semiparametric Estimators model smoothing methods different using
...Show More Authors

In this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes  n=40,60,100,variances used σ2=0.5,1,1.5 the results  for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between Bayesian Method and Full Maximum Likelihood to estimate Poisson regression model hierarchy and its application to the maternal deaths in Baghdad
...Show More Authors

Abstract:

 This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.

The comparison was done by  simulation  using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the  Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood  with sample size  (n = 30) is the best to represent the maternal mortality data after it has been reliance value param

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
مجلة العلوم الاقتصادية والإدارية
Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
...Show More Authors

Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application

Publication Date
Sat Jan 01 2022
Journal Name
The 2nd Universitas Lampung International Conference On Science, Technology, And Environment (ulicoste) 2021
A comparison between IRI-2016 and ASAPS models for predicting foF2 ionospheric parameter over Baghdad city
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Dec 12 2010
Journal Name
Alustath Journal For Human And Social Sciences
Suggested Approach to deal with Multicollinearity Problem – with Application –
...Show More Authors

This research introduce a study with application on Principal Component Regression obtained from some of the explainatory variables to limitate Multicollinearity problem among these variables and gain staibilty in their estimations more than those which yield from Ordinary Least Squares. But the cost that we pay in the other hand losing a little power of the estimation of the predictive regression function in explaining the essential variations. A suggested numerical formula has been proposed and applied by the researchers as optimal solution, and vererifing the its efficiency by a program written by the researchers themselves for this porpuse through some creterions: Cumulative Percentage Variance, Coefficient of Determination, Variance

... Show More
Preview PDF