Preferred Language
Articles
/
jeasiq-848
Comparison between some of linear classification models with practical application
...Show More Authors

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs two groups when the response variable with tow categorise only.

The first form is the linear discriminant function ,The second is the probability form which it is derivative as alternative for the linear discriminant function while the third form is the probability function model. Of the logistic regression the comparison between these methods is based on measure of the probability  of misclassification .We show that the results of the  probability form  of the logistic regression has minimum probability of misclassification through the application on the data of two types of (leukemia).

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques
...Show More Authors

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Mon Mar 14 2016
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
Determine the chemical content of Bay (Laurus nobilis L.) leaves extract and its effectivenss against some bacterial species: Determine the chemical content of Bay (Laurus nobilis L.) leaves extract and its effectivenss against some bacterial species
...Show More Authors

This study has been performed to study the inhibitory effects of crude plant extracts of Bay (laurus nobilis) leaves against some bacterial isolates represented by Staphylococcus aureus, Staphylococcus epidermids, Proteus vulgaris, Bacillus subtilis, Escherichia coli, and Pseudomonas aeroginosa in vitro. The results showed that percentages of essential chemical of laurus nobilis leaves which represented by moisture, total oil, total ash, crude protein, crude fibers, carbohydrites and caloric values in dry weight are 5.96, 4.28, 14.2, 8.75, 24.8, 76.99%, and 284.92 kcal/100g respectively, the percentages of some major and minor mineral elements of laurus nobilis leaves powder which represented by Mg, Fe, Cu, Pb, Cd and As, are: 0.211, 0.1

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 04 2014
Journal Name
Iraqi National Journal Of Chemistry
Comparative Study for Antibacterial Activity of Some Maleamic acid Derivatives with Some Commercial Antibiotic
...Show More Authors

Publication Date
Fri Jun 01 2012
Journal Name
Journal Of Controlled Release
The efficacy of aerosol treatment with non-ionic surfactant vesicles containing amphotericin B in rodent models of leishmaniasis and pulmonary aspergillosis infection
...Show More Authors

View Publication
Scopus (49)
Crossref (43)
Scopus Clarivate Crossref
Publication Date
Tue Jun 24 2025
Journal Name
Journal Of Baghdad College Of Dentistry
A Comparison between the Horizontal Condylar and Bennett Angles of Iraqi Full Mouth Rehabilitation Patients by Using Two Different Articulator Systems (An In-Vivo Study)
...Show More Authors

Background: Errors of horizontal condylar inclinations and Bennett angles had largely affected the articulation of teeth and the pathways of cusps. The aim of this study was to estimate and compare between the horizontal condylar (protrusive) angles and Bennett angles of full mouth rehabilitation patients using two different articulator systems. Materials and Methods: Protrusive angles and Bennett angles of 50 adult males and females Iraqi TMD-free full mouth rehabilitation patients were estimated by using two different articulator systems. Arbitrary hinge axis location followed by protrusive angles and Bennett angles, estimation was done by a semiadjustable articulator system. A fully adjustable articulator system was utilized to locate th

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Lecture Notes Of The Institute For Computer Sciences, Social Informatics And Telecommunications Engineering
Sensor Data Classification for the Indication of Lameness in Sheep
...Show More Authors

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jan 10 2016
Journal Name
British Journal Of Applied Science & Technology
The Effect of Classification Methods on Facial Emotion Recognition ‎Accuracy
...Show More Authors

The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Two-Stage Classification of Breast Tumor Biomarkers for Iraqi Women
...Show More Authors

Objective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.

Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 15 2022
Journal Name
Knowledge And Information Systems
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c

... Show More
View Publication
Scopus (1)
Scopus Crossref