At different stages of the evolution of the modern Iraqi state ears last century did not receive the industrial sectors importance in great domestic production (GDP) and that the limited resources available in the initial stage and the dominance of public sector industry in the late stage , so the continued decline in the contribution of the private industrial sector in GDP , and this is why imbalance in the labor market and reduced demand for manpower in this sector despite the high rates of labor supply and the various skills and levels of investments, their human and the different geographical distribution , and direction of labor to other economic sectors most requested of the labor force such as the pubic sector and service sector, as well as the relationship of positive large between output and demand for labor that did not play its due to poor performance of the output in this sector, which led to double the impact in this sector to attract employment . Different working conditions and incentives and orientations between both the industrial and public sectors was reflected later on the efficiency of human resources and productivity delete facilities nationalized long experience of investment and production could not be compensated under the bureaucratic public sector, also lost direction totalitarian economic policies previous all elements of economic efficiency and competitiveness of production, than about the Iraqi economy to yield economy depends on oil revenues, without being able to these policies create growth parallel in the Iraqi economy, and that the administration of socialism and the predominance of the public sector has been marginalized private sector and disrupted its role in development, this marginalization has led to decline the role of the private industrial sector and the size of its ability to develop and absorb the workforce, particularly that sector limited the capabilities and expertise, which dominated the activity of this sector work small and medium enterprises, which contributed modestly in the composition of GDP due to the weak capacity of physical and technical
Thin films of vanadium oxide nanoparticles doped with different concentrations of europium oxide (2, 4, 6, and 8) wt % are deposited on glass and Si substrates with orientation (111) utilizing by pulsed laser deposition technique using Nd:YAG laser that has a wavelength of 1064 nm, average frequency of 6 Hz and pulse duration of 10 ns. The films were annealed in air at 300 °C for two hours, then the structural, morphological and optical properties are characterized using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy respectively. The X-ray diffraction results of V2O5:Eu2O3 exhibit that the film has apolycrystalline monoclinic V2O5 and triclinic V4O7 phases. The FESEM image shows a h
... Show MoreA thin film of (SnSe) and SnSe:Cu with various Cu ratio (0,3,5 and 7)% have been prepared by thermal evaporation technique with thickness 400±20 nm on glass substrate at (R.T). The effect of Cu dopants concentration on the structural, morphological, optical and electrical properties of (SnSe) Nano crystalline thin films was explored by using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), UV–Vis absorption spectroscopy and Hall Effect measurement respectively. X-ray diffraction analysis reveal the polycrystalline nature of the all films deposited with orthorhombic structure which possess a preferred orientation along the (111) plane. The crystalline sizes o
... Show MoreThis paper deals with the determination of stresses and deflections of clamped circular diaphragm strengthened by one or two ring-shaped concentric ribs, under uniform static and dynamic pressures. The simulation has been achieved by using the well-known engineering software finite element package MSC/NASTRAN.
As a design study, the effect of using a clamped ring, and the effect of using a ring-shaped rib on both surfaces of diaphragm instead of one, has been discussed in this work. To show the effectiveness of this study, results of this work have been compared with published data [1].
In the conclusion, the authors underline the validity of the&n
... Show MoreThe interlaminar fracture toughness of polymer blends reinforced by glass fiber has
been investigated. Epoxy (EP), unsaturated polyester(UPE), polystyrene (PS),
polyurethane (PU) and their blends with different ratios (10%PS/90%EP),
(20%PS/80%EP), (20%PU/80%EP) and (20%PU/80%UPE) were chosen as a matrices A
sheet of composites were prepared using hand lay -up method, these sheet were cut as the
double cantilever beam (DCB) specimen to determine interlaminar fracture toughness of
these composites .Its found that, blending of EP,UPE with 20% of PU will improve the
interlaminar fracture toughness ,but the adding of 10% PS, 20%PS to EP will decrease
the interlaminar toughness of these composites.
The grasping stability of robotic manipulators is crucial to enable autonomous manipulation in an environment where robots are facing obstacles in their route, where abrupt changes in the robot’s speed are induced. These speed variations will produce forces affecting the robotic manipulator, hence its grasping stability. In this research, the grasping stability of a robotic manipulator that functions according to a frictional self-locking mechanism is investigated statically and dynamically. Both theoretical and experimental results showed that the grasped object size, weight, and its orientation inside the gripper have a great effect on grasping stability. Both the theoretical and experimental results indicated that the grasping object p
... Show MoreIn this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.