Preferred Language
Articles
/
jeasiq-713
Different Methods for Estimating Location Parameter & Scale Parameter for Extreme Value Distribution
...Show More Authors

      In this study, different methods were used for estimating location parameter  and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment  estimation (ME),and approximation  estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile  as estimation for distribution functionwere used .Several models from extreme value distribution were used for data generating , for different sample sizes (small, medium, and large).The results were obtained  by  using  simulation  technique, Programs written using MATLAB program were used. To compare the performance for the methods used in this study, the mean squared error criterion (MSE) and mean absolute squared error criterion (MAPE) for two parameters for the extreme value distribution were used as criterion to compare the performance for the methods . The results showing according to the two criterions (MSE &MAPE), that maximum likelihood estimation is the best of all of the others methods, following by the method of moment estimation . The adjusted ridge regression estimation method have best performance for the suggested parameter for expected value to the percentile which was used as estimation for distribution function.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Tue Aug 18 2020
Journal Name
Journal Of Mechanics Of Continua And Mathematical Sciences
THE COMPARISON OF THE METHODS ESTIMATING THE FRACTIONAL DIFFERENCES OF PARAMETER AND ITS DEPENDENCE ON ESTIMATION THE BEST LINEAR MODEL OF TIME SERIES IN THE ENVIRONMENTAL FIELD
...Show More Authors

View Publication
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Bayesian methods to estimate the failure probability for electronic systems in case the life time data are not available
...Show More Authors

In this research, we find the Bayesian formulas and the estimation of Bayesian expectation for product system of Atlas Company.  The units of the system have been examined by helping the technical staff at the company and by providing a real data the company which manufacturer the system.  This real data include the failed units for each drawn sample, which represents the total number of the manufacturer units by the company system.  We calculate the range for each estimator by using the Maximum Likelihood estimator.  We obtain that the expectation-Bayesian estimation is better than the Bayesian estimator of the different partially samples which were drawn from the product system after  it checked by the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 25 2019
Journal Name
Iraqi Journal Of Physics
The nuclear level density parameter
...Show More Authors

The nuclear level density parameter  in non Equi-Spacing Model (NON-ESM), Equi-Spacing Model (ESM) and the Backshifted Energy Dependent Fermi Gas model (BSEDFG) was determined for 106 nuclei; the results are tabulated and compared with the experimental works. It was found that there are no recognizable differences between our results and the experimental -values. The calculated level density parameters have been used in computing the state density as a function of the excitation energies for 58Fe and 246Cm nuclei. The results are in a good agreement with the experimental results from earlier published work.

View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some methods for estimating the parameters of the binary logistic regression model using the genetic algorithm with practical application
...Show More Authors

Abstract

   Suffering the human because of pressure normal life of exposure to several types of heart disease as a result of due to different factors. Therefore, and in order to find out the case of a death whether or not, are to be modeled using binary logistic regression model

    In this research used, one of the most important models of nonlinear regression models extensive use in the modeling of applications statistical, in terms of heart disease which is the binary logistic regression model. and then estimating the parameters of this model using the statistical estimation methods, another problem will be appears in estimating its parameters, as well as when the numbe

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Discrete wavelet based estimator for the Hurst parameter of multivariate fractional Brownian motion
...Show More Authors
Abstract<p>In this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.</p>
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Quadrupole Moment &amp; Deformation Parameter for Even-Even 38Sr (A=76-102) Nuclide
...Show More Authors

View Publication
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Electrical glow discharges and plasma parameter of planar sputtering system for silver target
...Show More Authors

DC planar sputtering system is characterized by varying discharge potential of (250-2000 volt) and Argon gas pressures of (3.5×10-2 – 1.5) mbar. The breakdown voltage for silver electrode was studied with a uniform electric field at different discharge distances, as well as plasma parameters. The breakdown voltage is a product of the Argon gas pressure inside the chamber and gab distance between the electrodes, represent as Paschen curve. The Current-voltage characteristics curves indicate that the electrical discharge plasma is working in the abnormal glow region. Plasma parameters were found from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values of the electron temperature an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 09 2024
Journal Name
Engineering, Technology &amp; Applied Science Research
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of

... Show More
View Publication
Scopus (1)
Crossref (3)
Scopus Crossref
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Journal Of Physics
Laplacian Operator as Speaker Identification Parameter
...Show More Authors

New speaker identification test’s feature, extracted from the differentiated form of the wave file, is presented. Differentiation operation is performed by an operator similar to the Laplacian operator. From the differentiated record’s, two parametric measures have been extracted and used as identifiers for the speaker; i.e. mean-value and number of zero-crossing points.

View Publication Preview PDF