Preferred Language
Articles
/
jeasiq-690
A Note on the Hierarchical Model and Power Prior Distribution in Bayesian Quantile Regression
...Show More Authors

  In this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the  and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
International Journal Of Research - Granthaalayah
CALCULATION OF THE STOPPING POWER OF ALPHA PARTICLES AND ITS RANGE IN BONE TISSU
...Show More Authors

With the advancement of modern radiotherapy technology, radiation dose and dose distribution have significantly improved. as part of Natural development, interest has recently been renewed by treatment, especially in the use of heavy charged particles, because these radiation types serve theoretical advantages in all biological and physical aspects. The interactions of alpha particle with matter were studied and the stopping powers of alpha particle with Bone Tissue were calculated by using Zeigler’s formula and SRIM software, also the Range for this particle were calculated by using Mat lab language for (0.01-1000) MeV alpha energy.

Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use A State Space Model and Forecast House Prices in Baghdad.
...Show More Authors

The purchase of a home and access to housing is one of the most important requirements for the life of the individual and the stability of living and the development of the prices of houses in general and in Baghdad in particular affected by several factors, including the basic area of the house, the age of the house, the neighborhood in which the housing is available and the basic services, Where the statistical model SSM model was used to model house prices over a period of time from 2000 to 2018 and forecast until 2025 The research is concerned with enhancing the importance of this model and describing it as a standard and important compared to the models used in the analysis of time series after obtaining the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
On Shrunken Estimation of Generalized Exponential Distribution
...Show More Authors

This paper deal with the estimation of the shape parameter (a) of Generalized Exponential (GE) distribution when the scale parameter (l) is known via preliminary test single stage shrinkage estimator (SSSE) when a prior knowledge (a0) a vailable about the shape parameter as initial value due past experiences as well as suitable region (R) for testing this prior knowledge.

The Expression for the Bias, Mean squared error [MSE] and Relative Efficiency [R.Eff(×)] for the proposed estimator are derived. Numerical results about beha

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic
...Show More Authors

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic
...Show More Authors

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending

Scopus (1)
Scopus Crossref
Publication Date
Sat Jan 13 2024
Journal Name
Journal Of Advanced Research In Fluid Mechanics And Thermal Sciences
Influence of Surrounding Air Temperature and Humidity upon the Performance of a Gas Turbine Power Plant
...Show More Authors

Nowadays, energy demand continuously rises while energy stocks are dwindling. Using current resources more effectively is crucial for the world. A wide method to effectively utilize energy is to generate electricity using thermal gas turbines (GT). One of the most important problems that gas turbines suffer from is high ambient air temperature especially in summer. The current paper details the effects of ambient conditions on the performance of a gas turbine through energy audits taking into account the influence of ambient conditions on the specific heat capacity ( , isentropic exponent ( ) as well as the gas constant of air . A computer program was developed to examine the operation of a power plant at various ambient temperature

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
Effect of Climate Change on the Distribution of Zoonotic Cutaneous Leishmaniasis in Iraq
...Show More Authors

Phlebotomus papatasi sand fly is the main vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in Iraq. The aim of this study was to assess and predict the effects of climate change on the distribution of the cutaneous leishmaniasis (CL) cases and the main vector presently and in the future. Data of the CL cases were collected for the period (2000-2018) in addition to sand fly (SF) abundance. Geographic information system, R studio and MaxEnt (Maximum entropy niche model) software were used for analysis and predict effect of (elevation, population, Bio1-19, and Bio28-35) on CL cases distribution and SF occurrence. HadGEM2-ES model with two climate change scenarios, RCP 4.5 and RCP 8.5 were used for future projections 2050. The results showed th

... Show More
Scopus (4)
Scopus
Publication Date
Mon Dec 30 2024
Journal Name
Iraqi Journal Of Science
The Impact of Fear and Anti-Predator Behavior on the Dynamics of Stage-Structure Prey–Predator Model With a Harvesting
...Show More Authors

In this paper, an ecological model with stage-structure in prey population, fear, anti-predator and harvesting are suggested. Lotka-Volterra and Holling type II functional responses have been assumed to describe the feeding processes . The local and global stability of steady points of this model are established. Finally, the global dynamics are studied numerically to investigate the influence of the parameters on the solutions of the system, especially the effect of fear and anti-predation.

Scopus (2)
Scopus Crossref
Publication Date
Sat Feb 01 2020
Journal Name
International Journal Of Computer Science And Mobile Computing
Hierarchical Fixed Prediction of Mixed based for Medical Image Compression.
...Show More Authors

Publication Date
Thu Sep 15 2022
Journal Name
Knowledge And Information Systems
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref