Preferred Language
Articles
/
jeasiq-654
Analysis of Robust Principal Components Depends on the some methods of Projection-Pursuit

The analysis of the classic principal components are sensitive to the outliers where they are calculated from the characteristic values and characteristic vectors of correlation matrix or variance Non-Robust, which yields an incorrect results in the case of these data contains the outliers values. In order to treat this problem, we resort to use the robust methods where there are many robust methods Will be touched to some of them.

   The robust measurement estimators include the measurement of direct robust estimators for characteristic values by using characteristic vectors without relying on robust estimators for the   variance and covariance matrices. Also the analysis of the principal components search for the trends of the highest scattered data projected on these vectors, but instead of using the variance as a measure for scattering, we will use robust measurement estimators as indicator for Projection-Pursuit.

   In this paper, we used Croux and Ruiz-Gazen algorithm, where the principal components are recognize by projection data on the highest vector for robust measurement estimators, focusing on the robust measurement to Qn and MAD.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Processing of missing values in survey data using Principal Component Analysis and probabilistic Principal Component Analysis methods

The idea of ​​carrying out research on incomplete data came from the circumstances of our dear country and the horrors of war, which resulted in the missing of many important data and in all aspects of economic, natural, health, scientific life, etc.,. The reasons for the missing are different, including what is outside the will of the concerned or be the will of the concerned, which is planned for that because of the cost or risk or because of the lack of possibilities for inspection. The missing data in this study were processed using Principal Component  Analysis and self-organizing map methods using simulation. The variables of child health and variables affecting children's health were taken into account: breastfeed

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Partial Least Squares and Principal Components Methods by Simulation

Abstract                                                                                              

The methods of the Principal Components and Partial Least Squares can be regard very important methods  in the regression analysis, whe

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Nov 19 2018
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Study of the impact of foreign direct investment in the Iraqi tax system using the factorial analysis: (principal components)

The tax system, like any other system, as a set of elements and parts that complement each other and are interrelated and interact to achieve specific goals, and is a natural  reflection of the economic, social and political conditions prevailing in society, and therefore the objectives of tax policy formulated in line with the objectives of economic policy in general, which means that any change in economic policy clearly affects fiscal policy measures and fiscal policy in particular.

The problem of searching for the impact of foreign direct investment in the Iraqi tax system was focused on the study  the of foreign direct investment and therole played in developing and improving the economic reality and its implicatio

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use projection pursuit regression and neural network to overcome curse of dimensionality

Abstract

This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Tue Nov 19 2024
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Modified LASS Method Suggestion as an additional Penalty on Principal Components Estimation – with Application-

This research deals with a shrinking method concernes with the principal components similar to that one which used in the multiple regression “Least Absolute Shrinkage and Selection: LASS”. The goal here is to make an uncorrelated linear combinations from only a subset of explanatory variables that may have a multicollinearity problem instead taking the whole number say, (K) of them. This shrinkage will force some coefficients to equal zero, after making some restriction on them by some "tuning parameter" say, (t) which balances the bias and variance amount from side, and doesn't exceed the acceptable percent explained variance of these components. This had been shown by MSE criterion in the regression case and the percent explained v

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Using Some Robust Methods For Handling the Problem of Multicollinearity

The multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers  , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Slice inverse regression with the principal components in reducing high-dimensions data by using simulation

This research aims to study the methods of reduction of dimensions that overcome the problem curse of dimensionality when traditional methods fail to provide a good estimation of the parameters So this problem must be dealt with directly . Two methods were used to solve the problem of high dimensional data, The first method is the non-classical method Slice inverse regression ( SIR ) method and the proposed weight standard Sir (WSIR) method and principal components (PCA) which is the general method used in reducing dimensions,    (SIR ) and (PCA) is based on the work of linear combinations of a subset of the original explanatory variables, which may suffer from the problem of heterogeneity and the problem of linear

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Some Robust methods for Estimates the power Spectrum in ARMA Models Simulation Study

Abstract:

Robust statistics Known as, resistance to errors caused by deviation from the stability hypotheses of the statistical operations (Reasonable, Approximately Met, Asymptotically Unbiased, Reasonably Small Bias, Efficient ) in the data selected in a wide range of probability distributions whether they follow a normal distribution or a mixture of other distributions deviations different standard .

power spectrum function lead to, President role in the analysis of Stationary random processes, form stable random variables organized according to time, may be discrete random variables or continuous. It can be described by measuring its total capacity as function in frequency.

<

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some robust methods to estimate parameters of partial least squares regression (PLSR)

   The technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.

 There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unr

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Some of Robust the Non-Parametric Methods for Semi-Parametric Regression Models Estimation

In this research, some robust non-parametric methods were used to estimate the semi-parametric regression model, and then  these methods were compared using the MSE comparison criterion, different sample sizes, levels of variance, pollution rates, and three different models were used. These methods are S-LLS S-Estimation -local smoothing, (M-LLS)M- Estimation -local smoothing, (S-NW) S-Estimation-NadaryaWatson Smoothing, and (M-NW) M-Estimation-Nadarya-Watson Smoothing.

The results in the first model proved that the (S-LLS) method was the best in the case of large sample sizes, and small sample sizes showed that the

... Show More
Crossref
View Publication Preview PDF