Preferred Language
Articles
/
jeasiq-581
Climate change and dust storms in Iraq / 'Baghdad', case study
...Show More Authors

A dust storm in Iraq is a climatic phenomenon common in arid and semi-arid regions . The frequency of the occurrence has increased drastically in the last decade and it is increasing continuously .Baghdad city like the rest of Iraq is suffering from the significant increase in dust storms . In this research , the study of the phenomenon of dust storms for all types (Suspended dust , rising dust , dust storm) , and its relationship with some climate variables (Temperature , rainfall ,wind speed) .The statement of the impact of climate change on this phenomenon to Baghdad station  for the period (1981 – 2012) . Time series has been addressing the phenomenon of storms and climate variables for the time period under study, during which Iraq faced three wars affected the growing phenomenon occurring factors , missing values ​​were estimated and identification of multiple outliers within the existing time series of phenomena and  climate variables , the study found that climate change (the direction of rainfall downward,  the direction of the temperature to rise, the direction of wind speed to rise) paid to the growing phenomenon of dust storms in that station studied and showed the relationship of these variables to this phenomenon (by type) through regression models

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 03 2021
Journal Name
Lubricants
UV-Visible Spectrophotometer for Distinguishing Oxidation Time of Engine Oil
...Show More Authors

Samples of gasoline engine oil (SAE 5W20) that had been exposed to various oxidation times were inspected with a UV-Visible (UV-Vis) spectrophotometer to select the best wavelengths and wavelength ranges for distinguishing oxidation times. Engine oil samples were subjected to different thermal oxidation periods of 0, 24, 48, 72, 96, 120, and 144 hours, resulting in a range of total base number (TBN) levels. Each wavelength (190.5 – 849.5 nm) and selected wavelength ranges were evaluated to determine the wavelength or wavelength ranges that could best distinguish among all oxidation times. The best wavelengths and wavelength ranges were analyzed with linear regression to determine the best wavelength or range to predict oxidation t

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Thu Mar 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Nadaraya-Watson Estimator a Smoothing Technique for Estimating Regression Function
...Show More Authors

    The using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.

    In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes.  Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods
...Show More Authors

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some of linear classification models with practical application
...Show More Authors

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 11 2025
Journal Name
Iraqi Statisticians Journal
Semi-Parametric Fuzzy Quantile Regression Model EstimationBased on Proposed Metric via Jensen–Shannon Distance
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Semi Parametric Logistic Regression Model with the Outputs Representing Trapezoidal Intuitionistic Fuzzy Number
...Show More Authors

In this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.

the model was estimated on simulati

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Non-linear support vector machine classification models using kernel tricks with applications
...Show More Authors

The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Agricultural And Statistical Sciences
ON ERROR DISTRIBUTION WITH SINGLE INDEX MODEL
...Show More Authors

In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.

Scopus
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
Evaluating the Recharge of Ground Water within Al-Wand River Basin
...Show More Authors

The estimation of recharge to ground water is the important basics to improve the use of ground water with other available resources, and to save ground water resource from depletion, especially when using large quantity of ground water during a long time such as for agricultural purposes. Al-Wand River Basin in Iraq suffers from water shortage of its requirement of Blajo–Al-Wand Project, and to cover this shortage, the ground water plays a good role to overcome this problem. In this study, three methods were used to estimate the recharge and ground water storage for Al-Wand Basin, these methods are: Water Table Fluctuation (WTF), Water Balance of Climatic for Basin, and Water Table Balance for Basin. The results showe

... Show More
View Publication Preview PDF
Publication Date
Sat Mar 01 2008
Journal Name
Journal Of Economics And Administrative Sciences
PART 3 New Experiments Three Factors On The Box plot, Box notch & Outlier Values
...Show More Authors

New two experiments of the three factors, in this study were constructed to investigate the effects, of the fixed variations to the box plot on subjects' judgments of the box lengths. These two experiments were constructed as an extension to the group B experiments, the ratio experiments the experiments with two variables carried out previously by Hussin, M.M. (1989, 2006, 2007). The first experiment box notch experiment, and the second experiment outlier values experiment. Subjects were asked to judge what percentage the shorter represented of the longer length in pairs of box lengths and give an estimate of percentage, one being a standard plot and the other being of a different box lengths and

... Show More
View Publication Preview PDF
Crossref