Neuroendocrine differentiation has been mentioned in many cancers of non-neuroendocrinal organs, involving the gastrointestinal tract. In contrast, the correlation of focally diffused neuroendocrine differentiation in colorectal adenocarcinoma with neuroendocrine cell hyperplasia has not been somewhat reported. The objective of this research is to study the relationship between neuroendocrine cell hyperplasia and neuroendocrine differentiation in colorectal adenocarcinoma and to find the correlation of neuroendocrine differentiation and VEGF expression with clinicopathological parameters of colorectal adenocarcinoma. Methods employed in the current study were including eighty-one patients with colorectal cancer. Formalin fixed paraffin e
... Show MoreThis paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc
... Show MoreExcessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the M
... Show MoreThe using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.
In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes. Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo
... Show MoreThis paper constructs a new linear operator associated with a seven parameters Mittag-Leffler function using the convolution technique. In addition, it investigates some significant second-order differential subordination properties with considerable sandwich results concerning that operator.
Diabetic kidney disease is an illness of the glomerulus that interferes with the glomerular filtration barrier (GFB), which is worked to enable kidney to selective purification of water and solutes in addition to limiting the movement of large macromolecules such as albumin. In the glomerular endothelium, mesangial cells, foot cells, and the brush border of the proximal tubules, ACE-2 is expressed and that the kidneys represent the highest-expressing region of this enzyme. Thus, the current study aimed to evaluate ACE-2 level in this case compared to healthy condition. The study Conducted with 120 male and female ranging in age (30-65) years old. Ninety patients with type 2 diabetes subdivided into three groups on the basis of A
... Show MoreThis study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators