Preferred Language
Articles
/
jeasiq-513
Comparison some of methods wavelet estimation for non parametric regression function with missing response variable at random
...Show More Authors

Abstract

 The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .

The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation it is not possible to apply these methods because of the miss of one of its conditions which is dyadic sample size .

According to the great impact resulted from the problem , many researchers who devoted their studies to process this problem , by using traditional methods in processing missing data , whereas the current research used imputation methods more efficient and effective to process missing data as a primary stage so that these data will be ready and available to wavelet application , as a result simulation experiment proved that the suggested methods (Nearset Nighbor Polynomial Wavelet) are more efficient and superior to other methods , this paper also includes the auto correction of boundaries problem by using local polynomial models , and using different threshold values in wavelet estimations

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Improved Firefly Algorithm with Variable Neighborhood Search for Data Clustering
...Show More Authors

Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
Bayesian Computational Methods of the Logistic Regression Model
...Show More Authors
Abstract<p>In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.</p>
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
A Comparative Study for Estimate Fractional Parameter of ARFIMA Model
...Show More Authors

      Long memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 30 2015
Journal Name
College Of Islamic Sciences
Estimation of the names and verbs of some letters to consider the grammatical industry
...Show More Authors

Estimation of the names and verbs of some letters to consider the grammatical industry

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Estimation of return stock rate by using wavelet and kernel smoothers
...Show More Authors

This article aim to estimate the Return Stock Rate of the private banking sector, with two banks, by adopting a Partial Linear Model based on the Arbitrage Pricing Model (APT) theory, using Wavelet and Kernel Smoothers. The results have proved that the wavelet method is the best. Also, the results of the market portfolio impact and inflation rate have proved an adversely effectiveness on the rate of return, and direct impact of the money supply.

Scopus (2)
Scopus
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Bayes Estimators With others , for scale parameter and Reliability function of two parameters Frechet distribution
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
International Journal Of Nonlinear Analysis And Applications
Two Efficient Methods For Solving Non-linear Fourth-Order PDEs
...Show More Authors

This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.

Scopus (9)
Scopus
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Useing the Hierarchical Cluster Analysis and Fuzzy Cluster Analysis Methods for Classification of Some Hospitals in Basra
...Show More Authors

In general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As t

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
Hazard Rate Estimation Using Varying Kernel Function for Censored Data Type I
...Show More Authors

     In this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used:  local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the

... Show More
View Publication Preview PDF