Preferred Language
Articles
/
jeasiq-491
User (K-Means) for clustering in Data Mining with application
...Show More Authors

 

 

  The great scientific progress has led to widespread Information as information accumulates in large databases is important in trying to revise and compile this vast amount of data and, where its purpose to extract hidden information or classified data under their relations with each other in order to take advantage of them for technical purposes.

      And work with data mining (DM) is appropriate in this area because of the importance of research in the (K-Means) algorithm for clustering data in fact applied with effect can be observed in variables by changing the sample size (n) and the number of clusters (K) and their impact on the process of clustering in the algorithm.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
2019 International Conference On Automation, Computational And Technology Management (icactm)
Multi-Resolution Hierarchical Structure for Efficient Data Aggregation and Mining of Big Data
...Show More Authors

Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
A Cryptosystem for Database Security Based on TSFS Algorithm
...Show More Authors

Implementation of TSFS (Transposition, Substitution, Folding, and Shifting) algorithm as an encryption algorithm in database security had limitations in character set and the number of keys used. The proposed cryptosystem is based on making some enhancements on the phases of TSFS encryption algorithm by computing the determinant of the keys matrices which affects the implementation of the algorithm phases. These changes showed high security to the database against different types of security attacks by achieving both goals of confusion and diffusion.

View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Feb 05 2019
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Anemia Blood Cell localization Using Modified K- Means Algorithm
...Show More Authors

View Publication
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Data Mining Methods for Extracting Rumors Using Social Analysis Tools
...Show More Authors

       Rumors are typically described as remarks whose true value is unknown. A rumor on social media has the potential to spread erroneous information to a large group of individuals. Those false facts will influence decision-making in a variety of societies. In online social media, where enormous amounts of information are simply distributed over a large network of sources with unverified authority, detecting rumors is critical. This research proposes that rumor detection be done using Natural Language Processing (NLP) tools as well as six distinct Machine Learning (ML) methods (Nave Bayes (NB), random forest (RF), K-nearest neighbor (KNN), Logistic Regression (LR), Stochastic Gradient Descent (SGD) and Decision Tree (

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Using K-mean Clustering to Classify the Kidney Images
...Show More Authors

      This study has applied digital image processing on three-dimensional C.T. images to detect and diagnose kidney diseases.  Medical images of different cases of kidney diseases were compared with those of   healthy cases. Four different kidneys disorders, such as stones, tumors (cancer), cysts, and renal fibrosis were considered in additional to healthy tissues. This method helps in differentiating between the healthy and diseased kidney tissues. It can detect tumors in its very early stages, before they grow large enough to be seen by the human eye. The method used for segmentation and texture analysis was the k-means with co-occurrence matrix. The k-means separates the healthy classes and the tumor classes, and the affected

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
MR Brain Image Segmentation Using Spatial Fuzzy C- Means Clustering Algorithm
...Show More Authors

conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation. 

View Publication Preview PDF
Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The role of big data analytics in measuring and analyzing the quality costs of economic units : applied research in the Iraqi company for seed production
...Show More Authors

                The research aims to explain the role of huge data analyzes in measuring quality costs in the Iraqi company for the production of seed, and the research problem was diagnosed with the weakness of the approved method to measure quality costs, and the weak traditional systems of data analyzes, the researcher in the theoretical aspect relied on collecting sources and previous studies, as well as Adoption of the applied analytical approach in the practical aspect, as a set of financial analyzes were applied within the measurement of quality costs and a statement of the role of data analyzes in the practical side, the research concluded to a set of conc

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
Image Retrieval Using Data Mining Technique
...Show More Authors

Even though image retrieval is considered as one of the most important research areas in the last two decades, there is still room for improvement since it is still not satisfying for many users. Two of the major problems which need to be improved are the accuracy and the speed of the image retrieval system, in order to achieve user satisfaction and also to make the image retrieval system suitable for all platforms. In this work, the proposed retrieval system uses features with spatial information to analyze the visual content of the image. Then, the feature extraction process is followed by applying the fuzzy c-means (FCM) clustering algorithm to reduce the search space and speed up the retrieval process. The experimental results show t

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Some Estimation Methods Of GM(1,1) Model With Missing Data and Practical Application
...Show More Authors

This paper presents a grey model GM(1,1) of the first rank and a variable one and is the basis of the grey system theory , This research dealt  properties of grey model and a set of methods to estimate parameters of the grey model GM(1,1)  is the least square Method (LS) , weighted least square method (WLS), total least square method (TLS) and gradient descent method  (DS). These methods were compared based on two types of standards: Mean square error (MSE), mean absolute percentage error (MAPE), and after comparison using simulation the best method was applied to real data represented by the rate of consumption of the two types of oils a Heavy fuel (HFO) and diesel fuel (D.O) and has been applied several tests to

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Computers And Electronics In Agriculture
Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq
...Show More Authors

View Publication
Crossref (108)
Crossref