In this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and the moment estimation. Several cases from normal distribution for data generating, or different sample sizes (small, medium, and large). The results were obtained by using simulation technique, Programs written using MATLAB-R2008a program were used .Simulation results shown that bayes estimation when the prior distribution is (SRIG) distribution with (a=3, b=1) for, and with (a=b=3) for, and with (a=2, b=3) for, and with (a=1, b=3) for gives the smallest value of MSE and MAPE for all sample sizes.
This paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different
... Show MoreThis study dealt with the management strategy as an independent variable and the integrated industrial distribution as a variable. The study aimed at finding the integrated industrial distribution that fits with the management strategy in providing the needs of the firm on the one hand and reducing the cost of management that is reflected in increasing its profits.
The researcher selected the data from (130) decision makers in the corporation and used the questionnaire as a tool for collecting data and used a set of statistical tools and tools suitable for the nature of information and were processed using the data analysis system (SPSS version 24) Based on the analysis of the responses of the sample and the test of correlation and
In this paper we suggest new method to estimate the missing data in bivariate normal distribution and compare it with Single Imputation method (Unconditional mean and Conditional mean) by using simulation.
Abstract
The research Compared two methods for estimating fourparametersof the compound exponential Weibull - Poisson distribution which are the maximum likelihood method and the Downhill Simplex algorithm. Depending on two data cases, the first one assumed the original data (Non-polluting), while the second one assumeddata contamination. Simulation experimentswere conducted for different sample sizes and initial values of parameters and under different levels of contamination. Downhill Simplex algorithm was found to be the best method for in the estimation of the parameters, the probability function and the reliability function of the compound distribution in cases of natural and contaminateddata.
... Show More
Multiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of
... Show MoreIn this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes n=40,60,100,variances used σ2=0.5,1,1.5 the results for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the
... Show MoreThis study seeks to address the impact of marketing knowledge dimensions (product, price, promotion, distribution) on the organizational performance in relation to a number of variables which are (efficiency, effectiveness, market share, customer satisfaction), and seeks to reveal the role of marketing knowledge in organizational performance.
In order to achieve the objective of the study the researcher has adopted a hypothetical model that reflects the logical relationships between the variables of the study. In order to reveal the nature of these relationships, several hypotheses have been presented as tentative solutions and this study seeks to verify the validity of these hypotheses.
... Show MoreThe acceptance sampling plans for generalized exponential distribution, when life time experiment is truncated at a pre-determined time are provided in this article. The two parameters (α, λ), (Scale parameters and Shape parameters) are estimated by LSE, WLSE and the Best Estimator’s for various samples sizes are used to find the ratio of true mean time to a pre-determined, and are used to find the smallest possible sample size required to ensure the producer’s risks, with a pre-fixed probability (1 - P*). The result of estimations and of sampling plans is provided in tables.
Key words: Generalized Exponential Distribution, Acceptance Sampling Plan, and Consumer’s and Producer Risks
... Show MoreThe digital camera which contain light unit inside it is useful with low illumination but not for high. For different intensity; the quality of the image will not stay good but it will have dark or low intensity so we can not change the contrast and the intensity in order to increase the losses information in the bright and the dark regions. . In this search we study the regular illumination on the images using the tungsten light by changing the intensities. The result appears that the tungsten light gives nearly far intensity for the three color bands(RGB) and the illuminated band(L).the result depend on the statistical properties which represented by the voltage ,power and intensities and the effect of this parameter on the digital
... Show MoreThis research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),
... Show More