Preferred Language
Articles
/
jeasiq-41
A Comparison of Bayes Estimators for the parameter of Rayleigh Distribution with Simulation

   A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared error loss function and weighted squared error loss function) in the cases of the three different sets of prior distributions .Simulations is employed to obtain results. And determine the best estimator according to the smallest value of mean squared error and weighted mean squared error. We found  that the best estimation for the parameter for all sample sizes (n) , when the double prior distribution for  is SRIG - the natural conjugate family of priors distribution with values (a=5, b=0.5, =8, =0.5) and (a=8, b=1, =5, =1) for the  true value of  respectively .Also ,we obtained the best estimation for  when the double prior distribution for  is the natural conjugate family of priors-non-informative distribution with values(=0.5, =5, c=1) for  the true value of ().

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of estimations methods of the entropy function to the random coefficients for two models: the general regression and swamy of the panel data

In this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.

The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy Robust Estimation For Location Parameter

 In this paper, we introduce three robust fuzzy estimators of a location parameter based on Buckley’s approach, in the presence of outliers. These estimates were compared using the variance of fuzzy numbers criterion, all these estimates were best of Buckley’s estimate. of these, the fuzzy median was the best in the case of small and medium sample size, and in large sample size, the fuzzy trimmed mean was the best.

Crossref
View Publication Preview PDF
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Some Aspects of Weighted Rayleigh Distribution

In this paper, we proposed a new class of weighted Rayleigh distribution based on two parameters, scale and shape parameters which are introduced in Rayleigh distribution. The main properties of this class are investigated and derived.

Crossref
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Scopus (1)
Scopus
View Publication
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
The use of the genetic algorithm to estimate the parameters function of the hypoexponential distribution by simulation

In this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method

Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Estimating the general exponential distribution parameters using the simulation method

The main aim of this paper is to study how the different estimators of the two unknown parameters (shape and scale parameter) of a generalized exponential distribution behave for different sample sizes and for different parameter values. In particular, 

. Maximum Likelihood, Percentile and Ordinary Least Square estimators had been implemented for different sample sizes (small, medium, and large) and assumed several contrasts initial values for the two parameters. Two indicators of performance Mean Square Error and Mean Percentile Error were used and the comparisons were carried out between different methods of estimation  by using monte carlo simulation technique .. It was obse

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
A Comparison of the Methods for Estimation of Reliability Function for Burr-XII Distribution by Using Simulation.

This deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values

Crossref
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
2019 First International Conference Of Computer And Applied Sciences (cas)
Scopus (8)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimate for Survival and Related Functions of Weighted Rayleigh Distribution.

     In this paper, we introduce a new class of Weighted Rayleigh Distribution based on two parameters, one is the scale parameter and the other is the shape parameter introduced in Rayleigh distribution. The main properties of this class are derived and investigated . The moment method and least square method are used to obtain estimators of parameters of this distribution. The probability density function,   survival function, cumulative distribution and hazard function are derived and found. Real data sets are collected to investigate two methods that depend on in this study. A comparison is made between two methods of estimation and clarifies that MLE method is better than the OLS method by using the mea

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Feb 10 2016
Journal Name
ألمؤتمر الدولي العلمي الخامس للاحصائيين العرب/ القاهرة
Proposition of Modified Genetic Algorithm to Estimate Additive Model by using Simulation

Often phenomena suffer from disturbances in their data as well as the difficulty of formulation, especially with a lack of clarity in the response, or the large number of essential differences plaguing the experimental units that have been taking this data from them. Thus emerged the need to include an estimation method implicit rating of these experimental units using the method of discrimination or create blocks for each item of these experimental units in the hope of controlling their responses and make it more homogeneous. Because of the development in the field of computers and taking the principle of the integration of sciences it has been found that modern algorithms used in the field of Computer Science genetic algorithm or ant colo

... Show More
Preview PDF