Preferred Language
Articles
/
jeasiq-393
A comparison between the logistic regression model and Linear Discriminant analysis using Principal Component unemployment data for the province of Baghdad
...Show More Authors

     The objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.

     Was conducted to compare the two methods above and it became clear by comparing the  logistic regression model best of a Linear Discriminant  function written using the original data, either using Principal Component was reduced variables to 5 key factors by 62.875% of the total variance and the results were equal   . That the performance of a logistic regression equal to using the original data and Principal Component, while performing a Linear Discriminant function using Principal Component was better than the original data.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic
...Show More Authors

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending

Scopus (1)
Scopus Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
A comparison among Different Methods for Estimating Regression Parameters with Autocorrelation Problem under Exponentially Distributed Error
...Show More Authors

Multiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Estimate the Partial Linear Model Using Wavelet and Kernel Smoothers
...Show More Authors

This article aims to estimate the partially linear model by using two methods, which are the Wavelet and Kernel Smoothers. Simulation experiments are used to study the small sample behavior depending on different functions, sample sizes, and variances. Results explained that the wavelet smoother is the best depending on the mean average squares error criterion for all cases that used.

 

 

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between the empirical bayes method with moments method to estimate the affiliation parameter in the clinical trials using simulation
...Show More Authors

In this research the Empirical Bayes method is used to Estimate the affiliation parameter in the clinical trials and then we compare this with the Moment Estimates for this parameter using Monte Carlo stimulation , we assumed that the distribution of the observation is binomial distribution while the distribution with the unknown random parameters is beta distribution ,finally we conclude that the Empirical bayes method for the random affiliation parameter is efficient using Mean Squares Error (MSE) and for different Sample size .

View Publication Preview PDF
Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Use of Principal Components Analysis in the Formation of a Sustainable Human Development Index for Arab Countries
...Show More Authors

This study aims to derive a sustainable human development index for the Arab countries by using the principal components analysis, which can help in reducing the number of data in the case of multiple variables.  This can be relied upon in the interpretation and tracking sustainable human development in the Arab countries in the view of the multiplicity of sustainable human development indicators and its huge data, beside the heterogeneity of countries in a range of characteristics associated with indicators of sustainable human development such as area, population, and economic activity. The study attempted to use the available data to the selected Arab countries for the recent years. This study concluded that a single inde

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Proposing Robust IRWs Technique to Estimate Segmented Regression Model for the Bed load Transport of Tigris River with Change Point of Water Discharge Amount at Baghdad City
...Show More Authors

Segmented regression consists of several sections separated by different points of membership, showing the heterogeneity arising from the process of separating the segments within the research sample. This research is concerned with estimating the location of the change point between segments and estimating model parameters, and proposing a robust estimation method and compare it with some other methods that used in the segmented regression. One of the traditional methods (Muggeo method) has been used to find the maximum likelihood estimator in an iterative approach for the model and the change point as well. Moreover, a robust estimation method (IRW method) has used which depends on the use of the robust M-estimator technique in

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
A Comparison between Ericson's Formulae Results and Experimental Data Using New Formulae of Single Particle Level Density
...Show More Authors

The partial level density PLD of pre-equilibrium reactions that are described by Ericson’s formula has been studied using different formulae of single particle level density . The parameter  was used from the equidistant spacing model (ESM) model and the non- equidistant spacing model (non-ESM) and another formula of  are derived from the relation between  and level density parameter . The formulae used to derive  are the Roher formula, Egidy formula, Yukawa formula, and Thomas –Fermi formula. The partial level density results that depend on  from the Thomas-Fermi formula show a good agreement with the experimental data.

View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Mar 29 2021
Journal Name
Journal Of Engineering
Effluent quality assessment of sewage treatment plant using principal component analysis and cluster analysis
...Show More Authors

Sewage water is a mixture of water and solids added to water for various uses, so it needs to be treated to meet local or global standards for environmentally friendly waste production. The present study aimed to analyze the new Maaymyrh sewage treatment plant's quality parameters statistically at Hilla city. The plant is designed to serve 500,000 populations, and it is operating on a biological treatment method (Activated Sludge Process) with an average wastewater inflow of 107,000m3/day. Wastewater data were collected daily by the Mayoralty of Hilla from November 2019 to June 2020 from the influent and effluent in the (STP) new in Maaymyrh for five water quality standards, such as (BOD5), (COD), (TSS), (TP)

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Ordinary Methods (LS,IV) and Robust Methods (2SWLS,LTS,RA) to estimate the Parameters of ARX(1,1,1) Model for Electric Loads
...Show More Authors

 

Abstract:

The models of time series often suffer from the problem of the existence of outliers ​​that accompany the data collection process for many reasons, their existence may have a significant impact on the estimation of the parameters of the studied model. Access to highly efficient estimators  is one of the most important stages of statistical analysis, And it is therefore important to choose the appropriate methods to obtain good  estimators. The aim of this research is to compare the ordinary estimators and the robust estimators of the estimation of the parameters of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
comparison Bennett's inequality and regression in determining the optimum sample size for estimating the Net Reclassification Index (NRI) using simulation
...Show More Authors

 Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat

... Show More
View Publication Preview PDF
Crossref