Preferred Language
Articles
/
jeasiq-374
Application the generalized estimating equation Method (GEE) to estimate of conditional logistic regression model for repeated measurements
...Show More Authors

Conditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.

      For estimating the conditional regression model in the analysis of environment pollution as a function of oil production and environmental factors using the generalized estimating equation (GEE) in the formulation of inference methods that facilitate the conditional logistic regression model taking advantage of the actual correlations between responses in the data, as well as the specific correlation structure through robust sandwich estimators (RSE) as well as application many of various model selection criteria. Because the efficiency of estimates is contingent on the working correlation matrix specification, the appropriate selection of a working correlation matrix can significantly advance the GEE statistical inference efficiency. After comparing the performance of specific criteria indicating that QIC is the selection criterion that is most suited for GEE method. The application results showed that QIC had the lowest information loss in GEE method in which the objective to develop a predictive model of the candidate set, Through this research, condition logistic regression has also been demonstrated to be an effective tool that can be used in other studies to explore the relationships between response and explanatory variables.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
ESTIMATING NONPARAMETRIC AUTOREGRESSIVE CURVE BY SMOOTHING SPLINES METHOD
...Show More Authors

Preview PDF
Scopus
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Examining the Asymmetric Impacts of Interest and Exchange Rate on Investment in Egypt for the Period 1976-2020: Applying NARDL Model
...Show More Authors

Most of the studies conducted in the past decades focused on the effect of interest rates and exchange rates on domestic investment under the assumption that the independent variables have the same effect on the dependent variable, but there were limited studies that investigated the unequal effects of changes in interest rates and exchange rates, both positive and negative, on domestic investment.  This study used a nonlinear autoregressive distributed lag (NARDL) model to assess the unequal effects of the real interest rate and real exchange rate variables on domestic investment in Egypt for the period 1976 - 2020.  The results revealed that positive and negative shocks for both exchange rates have unequal effects on

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 21 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
New techniques to estimate the solution of autonomous system
...Show More Authors

This research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Estimate Raw Water Salinity for the Tigris River for a Long Time Using a Mathematical Model
...Show More Authors
Abstract<p>The measurement data of the raw water quality of Tigris River were statistically analyzed to measure the salinity value in relation to the selected raw water quality parameters. The analyzed data were collected from five water treatment plants (WTPs) assembled alongside of the Tigris River in Baghdad: Al-Karkh, Al-Karama, Al-Qadisiya, Al-Dora, and Al-Wihda for the period from 2015 to 2021. The selected parameters are total dissolved solid (TDS), electrical conductivity (EC), pH and temperature. The main objective of this research is to predicate a mathematical model using SPSS software to calculate the value of salinity along the river, in addition, the effect of electrical conductivi</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Robust Optimization with practical application
...Show More Authors

The purpose of this paper is applying the robustness in Linear programming(LP) to get rid of uncertainty problem in constraint parameters, and find the robust optimal solution, to maximize the profits of the general productive company of vegetable oils for the year 2019, through the modify on a mathematical model of linear programming when some parameters of the model have uncertain values, and being processed it using robust counterpart of linear programming to get robust results from the random changes that happen in uncertain values ​​of the problem, assuming these values belong to the uncertainty set and selecting the values that cause the worst results and to depend buil

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Adoption of multi – model Assignment Fuzzy to find Optimizing for the use of internet line in the Ministry of Science and Technlogy
...Show More Authors

We have provided in this research model multi assignment  with  fuzzy function goal has been to build programming model is correct Integer Programming fogging  after removing the case from the objective function data and convert it to real data .Pascal triangular graded mean using Pascal way to the center of the triangular.

The data processing to get rid of the case fogging which is surrounded by using an Excel 2007 either model multi assignment  has been used program LNDO to reach the optimal solution, which represents less than what can be from time to accomplish a number of tasks by the number of employees on the specific amount of the Internet, also included a search on some of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
An approximate solution for solving linear system of integral equation with application on "Stiff" problems
...Show More Authors

An approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly

View Publication Preview PDF
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Estimate the Partial Linear Model Using Wavelet and Kernel Smoothers
...Show More Authors

This article aims to estimate the partially linear model by using two methods, which are the Wavelet and Kernel Smoothers. Simulation experiments are used to study the small sample behavior depending on different functions, sample sizes, and variances. Results explained that the wavelet smoother is the best depending on the mean average squares error criterion for all cases that used.

 

 

View Publication Preview PDF
Crossref
Publication Date
Wed Sep 28 2022
Journal Name
Journal Of The College Of Education For Women
The Degree of Application of Digital Leadership and its Relationship to the Development of Administrative Work at the University of Tabuk
...Show More Authors

This study aims to explore the relationship between the degree of application of digital leadership and the development of administrative work at the University of Tabuk. It further aims to examine the presence of statistically significant differences between the average responses of faculty members and employees at the University of Tabuk regarding the study axes that are attributed to the following variables: (scientific rank, gender, and job), the study used the descriptive approach in its correlative style, and the questionnaire was used as a tool for data collection, as it was applied to a simple random of (310) members of the faculty and staff. University of Tabuk. The results showed that the degree of digital leadership applicatio

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jul 01 2025
Journal Name
Iet Conference Proceedings
Spatial quantile autoregressive model with application to poverty rates in the districts of Iraq
...Show More Authors

This research aims to provide insight into the Spatial Autoregressive Quantile Regression model (SARQR), which is more general than the Spatial Autoregressive model (SAR) and Quantile Regression model (QR) by integrating aspects of both. Since Bayesian approaches may produce reliable estimates of parameter and overcome the problems that standard estimating techniques, hence, in this model (SARQR), they were used to estimate the parameters. Bayesian inference was carried out using Markov Chain Monte Carlo (MCMC) techniques. Several criteria were used in comparison, such as root mean squared error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R^2). The application was devoted on dataset of poverty rates acro

... Show More
View Publication Preview PDF
Crossref