In this paper has been one study of autoregressive generalized conditional heteroscedasticity models existence of the seasonal component, for the purpose applied to the daily financial data at high frequency is characterized by Heteroscedasticity seasonal conditional, it has been depending on Multiplicative seasonal Generalized Autoregressive Conditional Heteroscedastic Models Which is symbolized by the Acronym (SGARCH) , which has proven effective expression of seasonal phenomenon as opposed to the usual GARCH models. The summarizing of the research work studying the daily data for the price of the dinar exchange rate against the dollar, has been used autocorrelation function to detect seasonal first, then was diagnosed with a problem of heteroscdastic , passing through the phase estimation using the method of Maximum Likelihood Conditional and on the assumption that the random error is distributed normal distribution with the application on more than one rank for seasonal model, then determine the appropriate rank of the specimen using a variety of standards down to the prediction phase, it has been shown through the application on the study data stages that the best model for predicting volatility is SGARCH (1,0)(1,0).
This research was from an introduction, three topics and a conclusion, as follows:
The first topic: the concept of Islamic banks and their emergence and development, which includes three demands are:
The first requirement: the concept of Islamic banks and types, and there are two requirements:
* Definition of Islamic banks language and idiom.
* Types of Islamic banks.
The second requirement: the emergence and development of Islamic banks.
Third requirement: the importance of Islamic banks and their objectives.
We learned about the concept of banks and their origins and how they developed and what are the most important types of Islamic banks
The second topic: Formulas and sources of financing in Islamic banks and
Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
Observed mosques with the advent of Islam under the auspices of care being the houses of God Almighty, and I like parts of the ground to him, the center of radiation spiritual, intellectual and ideological in the lives of Muslims, was the most important cultural and architectural evidence built by Muslims voicing their deep faith and serenity Aqidthm.valmsadjad better reflecting the reality of communication between the person and his Lord, because he is the most important building of permanence and survival, making it imperative designed the best visual forms both externally and internally.Mosques have been characterized in the United Arab Emirates distinct characteristics in terms of building elements of construction in general, and the
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others
... Show MoreReceipt date:06/23/2020 accepted date:7/15/2020 Publication date:12/31/2021
This work is licensed under a Creative Commons Attribution 4.0 International License
The executive authority differs from one country to another, as it differs from a federal state to another according to the nature of the applied political systems, so this research focused on federal states according to their political systems, then going into the details of the executive authority and its role In the federal states by referring to the four federal experiments
... Show MoreThis research introduce a study with application on Principal Component Regression obtained from some of the explainatory variables to limitate Multicollinearity problem among these variables and gain staibilty in their estimations more than those which yield from Ordinary Least Squares. But the cost that we pay in the other hand losing a little power of the estimation of the predictive regression function in explaining the essential variations. A suggested numerical formula has been proposed and applied by the researchers as optimal solution, and vererifing the its efficiency by a program written by the researchers themselves for this porpuse through some creterions: Cumulative Percentage Variance, Coefficient of Determination, Variance
... Show Moreفي هذا البحث نحاول تسليط الضوء على إحدى طرائق تقدير المعلمات الهيكلية لنماذج المعادلات الآنية الخطية والتي تزودنا بتقديرات متسقة تختلف أحيانا عن تلك التي نحصل عليها من أساليب الطرائق التقليدية الأخرى وفق الصيغة العامة لمقدرات K-CLASS. وهذه الطريقة تعرف بطريقة الإمكان الأعظم محدودة المعلومات "LIML" أو طريقة نسبة التباين الصغرى"LVR
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreStatistical methods of forecasting have applied with the intention of constructing a model to predict the number of the old aged people in retirement homes in Iraq. They were based on the monthly data of old aged people in Baghdad and the governorates except for the Kurdistan region from 2016 to 2019. Using Box-Jenkins methodology, the stationarity of the series was examined. The appropriate model order was determined, the parameters were estimated, the significance was tested, adequacy of the model was checked, and then the best model of prediction was used. The best model for forecasting according to criteria of (Normalized BIC, MAPE, RMSE) is ARIMA (0, 1, 2).
Statistical methods of forecasting have applied with the intention of constructing a model to predict the number of the old aged people in retirement homes in Iraq. They were based on the monthly data of old aged people in Baghdad and the governorates except for the Kurdistan region from 2016 to 2019. Using BoxJenkins methodology, the stationarity of the series was examined. The appropriate model order was determined, the parameters were estimated, the significance was tested, adequacy of the model was checked, and then the best model of prediction was used. The best model for forecasting according to criteria of (Normalized BIC, MAPE, RMSE) is ARIMA (0, 1, 2)