The aim of this paper to find Bayes estimator under new loss function assemble between symmetric and asymmetric loss functions, namely, proposed entropy loss function, where this function that merge between entropy loss function and the squared Log error Loss function, which is quite asymmetric in nature. then comparison a the Bayes estimators of exponential distribution under the proposed function, whoever, loss functions ingredient for the proposed function the using a standard mean square error (MSE) and Bias quantity (Mbias), where the generation of the random data using the simulation for estimate exponential distribution parameters different sample sizes (n=10,50,100) and (N=1000), taking initial values for the parameters and initial value b, to get to estimator balanced add between two loss function ,moreover, the optimal sample size determination under proposed entropy loss function.
We have provided in this research model multi assignment with fuzzy function goal has been to build programming model is correct Integer Programming fogging after removing the case from the objective function data and convert it to real data .Pascal triangular graded mean using Pascal way to the center of the triangular.
The data processing to get rid of the case fogging which is surrounded by using an Excel 2007 either model multi assignment has been used program LNDO to reach the optimal solution, which represents less than what can be from time to accomplish a number of tasks by the number of employees on the specific amount of the Internet, also included a search on some of the
... Show MoreIn this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
Abstract
In this research we been estimated the survival function for data suffer from the disturbances and confusion of Iraq Household Socio-Economic Survey: IHSES II 2012 , to data from a five-year age groups follow the distribution of the Generalized Gamma: GG. It had been used two methods for the purposes of estimating and fitting which is the way the Principle of Maximizing Entropy: POME, and method of booting to nonparametric smoothing function for Kernel, to overcome the mathematical problems plaguing integrals contained in this distribution in particular of the integration of the incomplete gamma function, along with the use of traditional way in which is the Maximum Likelihood: ML. Where the comparison on t
... Show MoreEstimating multivariate location and scatter with both affine equivariance and positive break down has always been difficult. Awell-known estimator which satisfies both properties is the Minimum volume Ellipsoid Estimator (MVE) Computing the exact (MVE) is often not feasible, so one usually resorts to an approximate Algorithm. In the regression setup, algorithm for positive-break down estimators like Least Median of squares typically recomputed the intercept at each step, to improve the result. This approach is called intercept adjustment. In this paper we show that a similar technique, called location adjustment, Can be applied to the (MVE). For this purpose we use the Minimum Volume Ball (MVB). In order
... Show MoreQuality control is an effective statistical tool in the field of controlling the productivity to monitor and confirm the manufactured products to the standard qualities and the certified criteria for some products and services and its main purpose is to cope with the production and industrial development in the business and competitive market. Quality control charts are used to monitor the qualitative properties of the production procedures in addition to detecting the abnormal deviations in the production procedure. The multivariate Kernel Density Estimator control charts method was used which is one of the nonparametric methods that doesn’t require any assumptions regarding the distribution o
... Show MoreThe analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the
... Show MoreOne of the most important problems in the statistical inference is estimating parameters and Reliability parameter and also interval estimation , and testing hypothesis . estimating two parameters of exponential distribution and also reliability parameter in a stress-strength model.
This parameter deals with estimating the scale parameter and the Location parameter µ , of two exponential distribution ,using moments estimator and maximum likelihood estimator , also we estimate the parameter R=pr(x>y), where x,y are two- parameter independent exponential random variables .
Statistical properties of this distribution and its properti
... Show MoreIn this paper, a Monte Carlo Simulation technique is used to compare the performance of the standard Bayes estimators of the reliability function of the one parameter exponential distribution .Three types of loss functions are adopted, namely, squared error loss function (SELF) ,Precautionary error loss function (PELF) andlinear exponential error loss function(LINEX) with informative and non- informative prior .The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators
The study deals with the issue of multi-choice linear mathematical programming. The right side of the constraints will be multi-choice. However, the issue of multi-purpose mathematical programming can not be solved directly through linear or nonlinear techniques. The idea is to transform this matter into a normal linear problem and solve it In this research, a simple technique is introduced that enables us to deal with this issue as regular linear programming. The idea is to introduce a number of binary variables And its use to create a linear combination gives one parameter was used multiple. As well as the options of linear programming model to maximize profits to the General Company for Plastic Industries product irrigation sy
... Show MoreIn this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application