Preferred Language
Articles
/
jeasiq-290
Compare to the conditional logistic regression models with fixed and mixed effects for longitudinal data
...Show More Authors

Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variability. In the practical sphere it is however more realistic to capture the most significant parameters of the research design through the best fitted candidate model for this research. Simulation studies demonstrate that the mixed-effects conditional logistic regression is more accurate for pollution studies, with fixed-effects conditional logistic regression models potentially generating flawed conclusions.  This is because mixed-effects conditional logistic regression provides detailed insights on clusters that were largely overlooked by fixed-effects conditional logistic regression.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 11 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Some Methods For A single Imputed A missing Observation In Estimating Nonparametric Regression Function
...Show More Authors

In this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.      

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
ESTIMATED NON-PARAMETRIC AND SEMI-PARAMETRIC MODEL FOR LONGITUDINAL DATA
...Show More Authors

View Publication
Scopus
Publication Date
Sat Jan 19 2019
Journal Name
Iraqi Journal Of Agricultural Sciences
USING PROBABILITY REGRESSION MODELS TO MEASURING MANAGEMENT EFFICIENCY FOR BROILER PROJECTS
...Show More Authors

The efficiency of management is determining factor for the success or failure of agricultural projects generally and Livestock particularly achieving its objectives. Therefore, this research came to diagnose the most important variables that determine the efficiency of management using the probability regression models to measure the probability of management efficient of broilers production projects using  random sample included (60) broilers projects represented 11.6% of Baghdad province (research community) in 2016. After estimating the relationship between the management efficiency (descriptive dependent variable) and the independent variables affecting it (age, educational level, production index (PI), experience). The results

... Show More
View Publication
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Bayesian methods to estimate the failure probability for electronic systems in case the life time data are not available
...Show More Authors

In this research, we find the Bayesian formulas and the estimation of Bayesian expectation for product system of Atlas Company.  The units of the system have been examined by helping the technical staff at the company and by providing a real data the company which manufacturer the system.  This real data include the failed units for each drawn sample, which represents the total number of the manufacturer units by the company system.  We calculate the range for each estimator by using the Maximum Likelihood estimator.  We obtain that the expectation-Bayesian estimation is better than the Bayesian estimator of the different partially samples which were drawn from the product system after  it checked by the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
Accounting Mining Data Using Neural Networks (Case study)
...Show More Authors

Business organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Physics: Conference Series
Bayesian Computational Methods of the Logistic Regression Model
...Show More Authors
Abstract<p>In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.</p>
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Sun Sep 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
The Use of Replacement Models On Determine the Optimal Time to Replacement
...Show More Authors

Abstract:-

            The approach maintenance and replacement one of techniques of operations research whom cares of the failure experienced by a lot of production lines which consist of a set of machines and equipment, which in turn exposed to the failure or work stoppages over the lifetime, which requires reducing the working time of these machines or equipment below what can or conuct  maintenance process once in a while or a replacement for one part of the machine or replace one of the machines in production lines. In this research is the study of the failure s that occur in some parts of one of the machines for the General Company for Vege

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Probabilistic Inventory Models With Pareto Distribution
...Show More Authors

Inventory or inventories are stocks of goods being held for future use or sale. The demand for a product in is the number of units that will need to be removed from inventory for use or sale during a specific period. If the demand for future periods can be predicted with considerable precision, it will be reasonable to use an inventory rule that assumes that all predictions will always be completely accurate. This is the case where we say that demand is deterministic.

The timing of an order can be periodic (placing an order every days) or perpetual (placing an order whenever the inventory declines to units).

in this research we discuss how to  formulating inv

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Using game theory models to determine the profit maximization policies for PepsiCo and Coca Cola in Baghdad
...Show More Authors

(Use of models of game theory in determining the policies to maximize profits for the Pepsi Cola and Coca-Cola in the province of Baghdad)

Due to the importance of the theory of games especially theories of oligopoly in the study of the reality of competition among companies or governments and others the researcher linked theories of oligopoly to Econometrics to include all the policies used by companies after these theories were based on price and quantity only the researcher applied these theories to data taken from Pepsi Cola and Coca-Cola In Baghdad Steps of the solution where stated for the models proposed and solutions where found to be balance points is for the two companies according to the princi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 31 2026
Journal Name
Al Kut Journal Of Economics And Administrative Sciences
Use of the Bootstrap in the logistic regression model for Breast cancer disease
...Show More Authors

The logistic regression model is one of the oldest and most common of the regression models, and it is known as one of the statistical methods used to describe and estimate the relationship between a dependent random variable and explanatory random variables. Several methods are used to estimate this model, including the bootstrap method, which is one of the estimation methods that depend on the principle of sampling with return, and is represented by a sample reshaping that includes (n) of the elements drawn by randomly returning from (N) from the original data, It is a computational method used to determine the measure of accuracy to estimate the statistics, and for this reason, this method was used to find more accurate estimates. The ma

... Show More
View Publication