Preferred Language
Articles
/
jeasiq-2760
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad
...Show More Authors

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal component algorithm, The second kernel principal component algorithm, and The last is the faster ICA algorithm. Then the important features extracted in the three algorithms for features extraction will be entered into machine learning algorithms: The first K nearest neighbor algorithm, The second survival tree algorithm (or regression tree), and the last random survival forests algorithm.

Two criteria for comparing the best models to estimate survival have relied on the MSE and the C-Index. The best model for estimating and predicting survival is the use of the fastest ICA algorithm with the random survival forest algorithm that gave the lowest amount to MSE and the highest value to the C-Index. Accordingly, we recommend doctors and medical professionals in Iraq adopt this model to estimate survival for patients with breast cancer.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 17 2015
Journal Name
Iraqi Journal Of Science
Dissemination of Carbapenem resistant Pseudomonas aeruginosa among burn patients in Karbala Province\IraqDissemination of Carbapenem resistant Pseudomonas aeruginosa among burn patients in Karbala Province\Iraq
...Show More Authors

In this study, 158 clinical samples were collected from hospitalized burn patients during the period from December 2012 to June 2013 in Karbala province\ Iraq. Bacterial isolates were identified using conventional biochemical tests and then identification was confirmed by using Vitek-2 compact system. Pseudomonas aeruginosa recovery was 60 isolates in this study. These isolates were analyzed for antibiotic susceptibility by the disk diffusion test (DDT) according to Kirby Bauer's method using seven clinically important antipseudomonal agents: carbapenems (Imipenem and Meropenem), pencillins (Piperacillin), cephalosporins (Ceftazidim), monobactam (Aztreonam), quinolones (Ciprofloxacin) and aminoglycosides (Gentamicin). The results of resista

... Show More
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
اثر استخدام دورة التعلم في تحصیل طالبات مرحلة الرابع العام للمعلومات الفیزیائیة واستبقائھا
...Show More Authors

This research aims to reveal the impact of applying a teaching course in
gaining and preserving information by female students comparing with the
traditional method, through testing the two following hypotheses:
1. There is no difference with statistical significance at the level of
significance (0.05) between the average grades achieved by the
experimental group of female students taught using a teaching course,
and the control group of female students taught using the traditional
method.
2. There is no difference with statistical significance at the level of
significance (0.05) between the average grades achieved by the
experimental group of female students taught using a teaching course,
and the contro

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 02 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Traffic Classification of IoT Devices by Utilizing Spike Neural Network Learning Approach
...Show More Authors

Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas

... Show More
View Publication
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Wed May 17 2023
Journal Name
International Journal Of Computational Intelligence Systems
Prediction of ROP Zones Using Deep Learning Algorithms and Voting Classifier Technique
...Show More Authors
Abstract<p>Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th</p> ... Show More
View Publication
Scopus (10)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (20)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Thu Sep 29 2022
Journal Name
World Journal Of Clinical Infectious Diseases
Five-year retrospective hospital-based study on epidemiological data regarding human leishmaniasis in West Kordofan state, Sudan
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Sun Apr 01 2018
Journal Name
Aquatic Geochemistry
The Origin and MgCl2–NaCl Variations in an Athalassic Sag Pond: Insights from Chemical and Isotopic Data
...Show More Authors

View Publication
Crossref (8)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Advanced Biotechnology And Experimental Therapeutics
Kidney injury molecule-1 and cystatin C as early biomarkers for renal dysfunction in Iraqi type 2 diabetes mellitus patients
...Show More Authors

Diabetic kidney disease (DKD) is caused by a variety of processes. As a result, one biomarker is insufficient to represent the complete process. This study Evaluate the diagnostic value of serum kidney injury molecule-1(KIM-1) and cystatin C (CysC) as early biochemical markers of DKD and predictive their sensitivities and specificities as biomarkers of nephropathy in Iraqi type 2 diabetic (T2DM) patients. This cross-sectional study include 161 T2DM patients from Diabetes and Endocrinology Center at Merjan medical city in Babylon. Patients divided according to urinary albumin creatinine ratio(ACR) (Group1:ACR≤30mg/g,Group2:ACR>30mg/g). Random spot urine and fasting blood samples were taken from each patient and urinary ACR, bloo

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue Apr 16 2024
Journal Name
Ecancermedicalscience
Prostate cancer across four countries in the Middle East: a multi-centre, observational, retrospective and prognostic study
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Organic &amp; Biomolecular Chemistry
Small-molecule anticancer agents kill cancer cells by harnessing reactive oxygen species in an iron-dependent manner
...Show More Authors

In the course of generating a library of open-chain epothilones, we discovered a new class of small molecule anticancer agents that has no effect on tubulin but instead kills selected cancer cell lines by harnessing reactive oxygen species in an iron-dependent manner.

View Publication
Scopus (11)
Crossref (13)
Scopus Clarivate Crossref