Preferred Language
Articles
/
jeasiq-2760
Machine Learning Techniques for Analyzing Survival Data of Breast Cancer Patients in Baghdad
...Show More Authors

The Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal component algorithm, The second kernel principal component algorithm, and The last is the faster ICA algorithm. Then the important features extracted in the three algorithms for features extraction will be entered into machine learning algorithms: The first K nearest neighbor algorithm, The second survival tree algorithm (or regression tree), and the last random survival forests algorithm.

Two criteria for comparing the best models to estimate survival have relied on the MSE and the C-Index. The best model for estimating and predicting survival is the use of the fastest ICA algorithm with the random survival forest algorithm that gave the lowest amount to MSE and the highest value to the C-Index. Accordingly, we recommend doctors and medical professionals in Iraq adopt this model to estimate survival for patients with breast cancer.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Jun 08 2021
Journal Name
مجلة العلوم و التكنولوجية للنشاطات البدنية و الرياضية
The effectiveness of using (7E’s) learning cycle in learning a movement chain on the uneven bars in the artistic gymnastics for women
...Show More Authors

Abstract The Object of the study aims to identify the effectiveness of using the 7E’s learning cycle to learn movement chains on uneven bars, for this purpose, we used the method SPSS. On a sample composed (20) students on collage of physical education at the university of Baghdad Chosen as two groups experimental and control group (10) student for each group, and for data collection, we used SPSS After collecting the results and having treated them statistically, we conclude the use 7E’s learning cycle has achieved remarkable positive progress, but it has diverged between to methods, On this basis, the study recommended the necessity of applying 7E’s learning cycle strategy in learning the movement chain on uneven bar

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 14 2019
Journal Name
Open Access Macedonian Journal Of Medical Sciences
Comparison of Clinico-Pathological Presentations of Triple-Negative versus Triple-Positive and HER2 Iraqi Breast Cancer Patients
...Show More Authors

BACKGROUND: Breast cancer remains the most common malignancy among the Iraqi population. Affected patients exhibit different clinical behaviours according to the molecular subtypes of the tumour. AIM: To identify the clinical and pathological presentations of the Iraqi breast cancer subtypes identified by Estrogen receptors (ER), Progesterone receptors (PR) and HER2 expressions. PATIENTS AND METHODS: The present study comprised 486 Iraqi female patients diagnosed with breast cancer. ER, PR and HER2 contents of the primary tumours were assessed through immunohistochemical staining; classifying the patients into five different groups: Triple Negative (ER/PR negative/HER2 negative), Triple Positive (ER/PR positive/HER2 positive), Luminal A (ER

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (3)
Scopus Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Detection of BRCA1and BRCA2 mutation for Breast Cancer in Sample of Iraqi Women above 40 Years
...Show More Authors

Breast cancer is the commonest cancer affecting women worldwide. Different studies have dealt with the etiological factors of that cancer aiming to find a way for early diagnosis and satisfactory therapy. The present study clarified the relationship between genetic polymorphisms of BRCA1 & BRCA2 genes and some etiological risk factors among breast cancer patients in Iraq. This investigation was carried out on 25 patients (all were females) who were diagnosed as breast cancer patients attended AL-Kadhemya Teaching Hospital in Baghdad and 10 apparently healthy women were used as a control, all women (patients and control) aged above 40 years. The Wizard Promega kit was used for DNA isolation from breast patients and normal individuals. B

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Smart Routing Management Framework Exploiting Dynamic Data Resources of Cross-Layer Design and Machine Learning Approaches for Mobile Cognitive Radio Networks: A Survey
...Show More Authors

View Publication
Scopus (20)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Mon Dec 10 2007
Journal Name
Iraqi Journal Of Laser
Evaluation of breast mass excision by 810 nm diode laser
...Show More Authors

Breast mass is by far the most important clinical problem that concerns the breast today. This study was carried out to evaluate diode laser as a cutting tool in breast mass excision and as a hemostatic tool for coagulation during surgery. Using 810 nm diode laser with optical fiber 600μm in diameter of conical tip, udder (cow's breast) tissue, and three female patients (mean age of 35.5 y with clinically palpable breast mass) had been used in this study. The patients were followed up regularly postoperatively. In preliminary work on udder tissue, the power needed for cutting and excision was 15W (power density= 5.3 kW/cm2). The time consumed for excision of a piece of udder tissue, 40×10×3 mm in dimensions was 5 min. The depth range

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 25 2020
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Preparation and Characterization of Topical Letrozole Nanoemulsion for Breast Cancer
...Show More Authors

Letrozole (LZL) is a non-steroidal competitive aromatase enzyme system inhibitor. The aim of this study is to improve the permeation of LZL through the skin by preparing as nanoemulsion using various numbers of oils, surfactants and co-surfactant with deionized water. Based on solubility studies, mixtures of oleic acid oil and tween 80/ transcutol p as surfactant/co-surfactant (Smix) in different percentages were used to prepare nanoemulsions (NS). Therefore, 9 formulae of (o/w) LZL NS were formulated, then pseudo-ternary phase diagram was used as a useful tool to evaluate the NS domain at Smix ratios: 1:1, 2:1 and 3:1.

View Publication Preview PDF
Scopus (9)
Crossref (4)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Mar 19 2023
Journal Name
Journal Of Educational And Psychological Researches
Cognitive Absorption and E-learning Readiness in Learning Digitization among Preparatory Stage in Qatar
...Show More Authors

Abstract

The study aims to examine the relationships between cognitive absorption and E-Learning readiness in the preparatory stage. The study sample consisted of (190) students who were chosen randomly. The Researcher has developed the cognitive absorption and E-Learning readiness scales. A correlational descriptive approach was adopted. The research revealed that there is a positive statistical relationship between cognitive absorption and eLearning readiness.

View Publication Preview PDF