Preferred Language
Articles
/
jeasiq-2607
Fuzzy Bridge Regression Model Estimating via Simulation
...Show More Authors

      The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared using standard mean squares error via simulated experiments and taking different sample sizes (20, 40, 80, and 160). The model's superiority was shown by achieving the least value of the mean squares error (MSE(, which indicated by the fuzzy bridge regression model.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compared Some Estimators Ordinary Ridge Regression And Bayesian Ridge Regression With Practical Application
...Show More Authors

Maulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the  method To address a problem  and  method To address a problem , In this research a comparisons are employed between the biased   method and unbiased   method with Bayesian   using Gamma distribution  method  addition to Ordinary Least Square metho

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Classic Local Least Estimatop And Bayesian Methoid For Estimating Semiparametric Logistic Regression Model
...Show More Authors

Semi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.

We compare two methods Bayesian and . Then the results were compared using MSe criteria.

A simulation had been used to study the empirical behavior for the Logistic model , with  different sample sizes and variances. The results using represent that the Bayesian method is better than the   at small samples sizes.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of The College Of Languages (jcl)
Fuzzy Logic and its Application in Linguistics
...Show More Authors

The purpose of this paper is to shed light on the concept of fuzzy logic ,its application in linguistics ,especially in language teaching and the fuzziness of some lexical items in English.
Fuzziness means that the semantic boundaries of some lexical items are indefinite and ideterminate.Fuzzy logic provides a very precise approach for dealing with this indeterminacy and uncertainty which grows (among other reasons) out of human behavior and the effect of society.
The concept of fuzzy logic has emerged in the development of the theory of fuzzy set by Lotfi Zadeh(a professor of computer science at the university of California) in 1965.It can be thought of as the application side of the fuzzy set theory. In linguistics, few scholars

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
CALCULATION BIASES FOR COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES
...Show More Authors

Abstract

Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.

View Publication Preview PDF
Crossref
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Use of model sales man fuzzy multi-objective linear for speed up and rationing in the transport mechanism used in the General Company for grain Processing
...Show More Authors

     Applications of quantitative methods, which had been explicit attention during previous period (the last two centuries) is the method of application sales man or traveling salesman method. According to this interest by the actual need for a lot of the production sectors and companies that distribute their products, whether locally made or the imported for customers or other industry sectors where most of the productive sectors and companies distributed always aspired to (increase profits, imports, the production quantity, quantity of exports. etc. ...) this is the part of the other hand, want to behave during the process of distribution routes that achieve the best or the least or most appropriate.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Nadaraya-Watson Estimator a Smoothing Technique for Estimating Regression Function
...Show More Authors

    The using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.

    In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes.  Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some robust methods to estimate parameters of partial least squares regression (PLSR)
...Show More Authors

   The technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.

 There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 10 2016
Journal Name
ألمؤتمر الدولي العلمي الخامس للاحصائيين العرب/ القاهرة
Proposition of Modified Genetic Algorithm to Estimate Additive Model by using Simulation
...Show More Authors

Often phenomena suffer from disturbances in their data as well as the difficulty of formulation, especially with a lack of clarity in the response, or the large number of essential differences plaguing the experimental units that have been taking this data from them. Thus emerged the need to include an estimation method implicit rating of these experimental units using the method of discrimination or create blocks for each item of these experimental units in the hope of controlling their responses and make it more homogeneous. Because of the development in the field of computers and taking the principle of the integration of sciences it has been found that modern algorithms used in the field of Computer Science genetic algorithm or ant colo

... Show More
Preview PDF
Publication Date
Fri Aug 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between the Local Polynomial Kernel and Penalized Spline to Estimating Varying Coefficient Model
...Show More Authors

Analysis the economic and financial phenomena and other requires to build the appropriate model, which represents the causal relations between factors. The operation building of the model depends on Imaging conditions and factors surrounding an in mathematical formula and the Researchers target to build that formula appropriately. Classical linear regression models are an important statistical tool, but used in a limited way, where is assumed that the relationship between the variables illustrations and response variables identifiable. To expand the representation of relationships between variables that represent the phenomenon under discussion we used Varying Coefficient Models

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use projection pursuit regression and neural network to overcome curse of dimensionality
...Show More Authors

Abstract

This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model

... Show More
View Publication Preview PDF
Crossref (1)
Crossref