Preferred Language
Articles
/
jeasiq-2504
An Artificial Intelligence Algorithm to Optimize the Classification of the Hepatitis Type
...Show More Authors

Hepatitis is one of the diseases that has become more developed in recent years in terms of the high number of infections. Hepatitis causes inflammation that destroys liver cells, and it occurs as a result of viruses, bacteria, blood transfusions, and others. There are five types of hepatitis viruses, which are (A, B, C, D, E) according to their severity. The disease varies by type. Accurate and early diagnosis is the best way to prevent disease, as it allows infected people to take preventive steps so that they do not transmit the difference to other people, and diagnosis using artificial intelligence gives an accurate and rapid diagnostic result. Where the analytical method of the data relied on the radial basis network to diagnose the disease, in addition to using the classification of the regression tree as well as the use of the genetic algorithm to improve the classification accuracy of both methods and by comparing the methods used to find out the most efficient methods of classification through criteria. Classification error, mean square root error, and average absolute relative error, and concluded that the experimental results are that the methods are good in terms of classification, as they gave results with less classification of error, and that the radial basis network was superior to the classification regression tree, and that the addition of the genetic algorithm led to an improvement classification accuracy.

Paper type: Research paper.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Aug 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c

... Show More
View Publication
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Gasoline, Ethanol and Methanol (GEM) Ternary Blends utilization as an Alternative to Conventional Iraqi Gasoline to Suppress Emitted Sulfur and Lead Components to Environment
...Show More Authors

 

Iraqi conventional gasoline characterized by its low octane number not exceed 82 and high lead and sulfur content. In this paper tri-component or ternary, blends of gasoline, ethanol, and methanol presented as an alternative fuel for Iraqi conventional gasoline. The study conducted by using GEM blend that equals E85 blend in octane rating. The used GEM selected from Turner, 2010 collection. G37 E20 M43 (37% gasoline + 20% ethanol+ 43% methanol) was chosen as GEM in present study. This blend used in multi-cylinder Mercedes engine, and the engine performance, and emitted emissions compared with that produced by a gasoline engine.

The results show that this blend can formulate with available Iraqi pro

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Structural and morphological study of nanostructured n-type silicon
...Show More Authors

In this study, investigations of structural properties of n-type porous silicon prepared by laser assisted-electrochemical etching were demonstrated. The Photo- electrochemical Etching technique, (PEC) was used to produce porous silicon for n-type with orientation of (111). X-ray diffraction studies showed distinct variations between the fresh silicon surface and the synthesized porous silicon surfaces. Atomic force microscopy (AFM) analysis was used to study the morphology of porous silicon layer. AFM results showed that root mean square (RMS) of roughness and the grain size of porous silicon decreased as etching current density increased. The chemical bonding and structure were investigated by using fourier transformation infrared spec

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 02 2023
Journal Name
Migration Letters
The Effectiveness of the Public Relations of the Sunni Endowment Diwan through Social Networking Sites: An Analytical Study of the official Facebook page of the Diwan
...Show More Authors

The Internet has added another dimension to public relations in institutions and organisations, as it provided tools and communication channels, especially social networking sites, which provided information and data on public relations for the institution through these websites. In addition to its communication with its audience, and the audience's interaction with it, so our research tagged (the effectiveness of public relations of the Sunni Endowment Diwan through social networking sites): An analytical study of the official Facebook page of the Diwan that addresses the knowledge and monitoring of the contents of the official Facebook page that public relations adopt in providing information, data, and activities of the Sunni End

... Show More
View Publication
Crossref
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Second Order Sliding Mode Controller Design for Pneumatic Artificial Muscle
...Show More Authors

In this paper, first and second order sliding mode controllers are designed for a single link robotic arm actuated by two Pneumatic Artificial Muscles (PAMs). A new mathematical model for the arm has been developed based on the model of large scale pneumatic muscle actuator model. Uncertainty in parameters has been presented and tested for the two controllers. The simulation results of the second-order sliding mode controller proves to have a low tracking error and chattering effect as compared to the first order one. The verification has been done by using MATLAB and Simulink software.

 

View Publication Preview PDF
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Artificial Neural Network Model for Wastewater Projects Maintenance Management Plan
...Show More Authors

Wastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost

... Show More
View Publication Preview PDF
Crossref (2)
Crossref