A seemingly uncorrelated regression (SUR) model is a special case of multivariate models, in which the error terms in these equations are contemporaneously related. The method estimator (GLS) is efficient because it takes into account the covariance structure of errors, but it is also very sensitive to outliers. The robust SUR estimator can dealing outliers. We propose two robust methods for calculating the estimator, which are (S-Estimations, and FastSUR). We find that it significantly improved the quality of SUR model estimates. In addition, the results gave the FastSUR method superiority over the S method in dealing with outliers contained in the data set, as it has lower (MSE and RMSE) and higher (R-Squared and R-Square Adjusted) values.
This article aims to explore the importance of estimating the a semiparametric regression function ,where we suggest a new estimator beside the other combined estimators and then we make a comparison among them by using simulation technique . Through the simulation results we find that the suggest estimator is the best with the first and second models ,wherealse for the third model we find Burman and Chaudhuri (B&C) is best.
In this paper, the effect of changes in bank deposits on the money supply in Iraq was studied by estimating the error correction model (ECM) for monthly time series data for the period (2010-2015) . The Philips Perron was used to test the stationarity and also we used Engle and Granger to test the cointegration . we used cubic spline and local polynomial estimator to estimate regression function .The result show that local polynomial was better than cubic spline with the first level of cointegration.
The logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables. The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.
... Show MoreAbstract:
In this research we discussed the parameter estimation and variable selection in Tobit quantile regression model in present of multicollinearity problem. We used elastic net technique as an important technique for dealing with both multicollinearity and variable selection. Depending on the data we proposed Bayesian Tobit hierarchical model with four level prior distributions . We assumed both tuning parameter are random variable and estimated them with the other unknown parameter in the model .Simulation study was used for explain the efficiency of the proposed method and then we compared our approach with (Alhamzwi 2014 & standard QR) .The result illustrated that our approach
... Show MoreIn this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
In this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro
... Show MoreThe research aims to shed light on banking liberalization and explain its impact on attracting customers, especially since Iraq adopted this policy after (2003) due to the changes that occurred, as the Central Bank of Iraq granted flexibility to banks in setting the interest rate on deposits and loans as well as allowing the entry of foreign banks in the local environment. The research relied on the analytical method for the dimensions of banking liberalization represented by (liberating interest rates, liberating credit, legal reserve requirements, entering foreign banks, privatization) as well as the factors affecting the attraction of customers, and a number of Iraqi banks listed in the Iraqi Stock Exchange were selected as a
... Show MoreThis research discussed, the process of comparison between the regression model of partial least squares and tree regression, where these models included two types of statistical methods represented by the first type "parameter statistics" of the partial least squares, which is adopted when the number of variables is greater than the number of observations and also when the number of observations larger than the number of variables, the second type is the "nonparametric statistic" represented by tree regression, which is the division of data in a hierarchical way. The regression models for the two models were estimated, and then the comparison between them, where the comparison between these methods was according to a Mean Square
... Show MoreIn this paper, the effect size measures was discussed, which are useful in many estimation processes for direct effect and its relation with indirect and total effects. In addition, an algorithm to calculate the suggested measure of effect size was suggested that represent the ratio of direct effect to the effect of the estimated parameter using the Regression equation of the dependent variable on the mediator variable without using the independent variable in the model. Where this an algorithm clear the possibility to use this regression equation in Mediation Analysis, where usually used the Mediator and independent variable together when the dependent variable regresses on them. Also this an algorithm to show how effect of the
... Show MoreIn linear regression, an outlier is an observation with large residual. In other words, it is an observation whose dependent-variable value is unusual given its values on the predictor variables. An outlier observation may indicate a data entry error or other problem.
An observation with an extreme value on a predictor variable is a point with high leverage. Leverage is a measure of how far an independent variable deviates from its mean. These leverage points can have an effect on the estimate of regression coefficients.
Robust estimation for regression parameters deals with cases that have very high leverage, and cases that are outliers. Robust estimation is essentially a
... Show More