This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squares method (FGLS) and the mean group method (MG) were used, and then the efficiency of the extracted estimators was compared in the case of mixed random parameters and the method that gives us the efficient estimator was chosen. Real data was applied that included the per capita consumption of electric energy (Y) for five countries, which represents the number of cross-sections (N = 5) over nine years (T = 9), so the number of observations is (n = 45) observations, and the explanatory variables are the consumer price index (X1) and the per capita GDP (X2). To evaluate the performance of the estimators of the (FGLS) method and the (MG) method on the general model, the mean absolute percentage error (MAPE) scale was used to compare the efficiency of the estimators. The results showed that the mean group estimation (MG) method is the best method for parameter estimation than the (FGLS) method. Also, the (MG) appeared to be the best and best method for estimating sub-parameters for each cross-section (country).
The time series of statistical methods mission followed in this area analysis method, Figuring certain displayed on a certain period of time and analysis we can identify the pattern and the factors affecting them and use them to predict the future of the phenomenon of values, which helps to develop a way of predicting the development of the economic development of sound
The research aims to select the best model to predict the number of infections with hepatitis Alvairose models using Box - Jenkins non-seasonal forecasting in the future.
Data were collected from the Ministry of Health / Department of Health Statistics for the period (from January 2009 until December 2013) was used
... Show MoreThe current study was carried out at the Fields belongs of Horticulture Department, Collage of Agricultural Engineering Science, University of Baghdad, Al-Jadiriyah for the spring season 2016 -2017 to study the effect for inoculation mycorrhizae and folair application with bio stimulators and their interaction in the growth characters of (local okra ptera). A factorial experiment (2 in randomized complete block design (RCBD), the experiment included (12) treatment Distributed in three replicates. The three factors used in this experiment included . The inoculation with control (C) Mycorrhizae ( M ) , Biozyme (B ) ( B1 2cm3.L-1), ( B2 4cm1-.L-1) , Phosphalas (P) (P 2cm3.L-1), ( M + B1), ( M + B2), (P +
... Show MoreIn this paper, the Monte-Carlo simulation method was used to compare the robust circular S estimator with the circular Least squares method in the case of no outlier data and in the case of the presence of an outlier in the data through two trends, the first is contaminant with high inflection points that represents contaminant in the circular independent variable, and the second the contaminant in the vertical variable that represents the circular dependent variable using three comparison criteria, the median standard error (Median SE), the median of the mean squares of error (Median MSE), and the median of the mean cosines of the circular residuals (Median A(k)). It was concluded that the method of least squares is better than the
... Show MoreVariable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.
Diyala river is the most important tributaries in Iraq, this river suffering from pollution, therefore, this research aimed to predict organic pollutants that represented by biological oxygen demand BOD, and inorganic pollutants that represented by total dissolved solids TDS for Diyala river in Iraq, the data used in this research were collected for the period from 2011-2016 for the last station in the river known as D17, before the river meeting Tigris river in Baghdad city. Analysis Neural Network ANN was used in order to find the mathematical models, the parameters used to predict BOD were seven parameters EC, Alk, Cl, K, TH, NO3, DO, after removing the less importance parameters. While the parameters that used to predict TDS were fourte
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreData hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image
... Show MoreA loS.sless (reversible) data hiding (embedding) method inside an image (translating medium) - presented in the present work using L_SB (least significant bit). technique which enables us to translate data using an image (host image), using a secret key, to be undetectable without losing any data or without changing the size and the external scene (visible properties) of the image, the hid-ing data is then can be extracted (without losing) by reversing &n
... Show MoreHartree-Fock (HF) method relies in the calculations of nonlinear optical properties (NLO) for benzoic acid molecule. Also, another theoretical study is conducted by using the TD-DFT Density Functional Theory through B3LYP/High Base Set 6-311++G (2d,2p) on Gaussian program09. Moreover, an experimental study has been done to obtain the electrons spectrum for benzoic acid with and without ethanol. While the experimental study is done by using UV/VIS. spectrophotometer. Energy gap values of electronic transition between HOMO and LUMO is obtained from theoretical and experimental results. Consequently, the theoretical result for determining the energy gap calculated from EHOMO-LUMO wasvery close to the results of UV / VIS. spectrum. A theoretica
... Show More