This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squares method (FGLS) and the mean group method (MG) were used, and then the efficiency of the extracted estimators was compared in the case of mixed random parameters and the method that gives us the efficient estimator was chosen. Real data was applied that included the per capita consumption of electric energy (Y) for five countries, which represents the number of cross-sections (N = 5) over nine years (T = 9), so the number of observations is (n = 45) observations, and the explanatory variables are the consumer price index (X1) and the per capita GDP (X2). To evaluate the performance of the estimators of the (FGLS) method and the (MG) method on the general model, the mean absolute percentage error (MAPE) scale was used to compare the efficiency of the estimators. The results showed that the mean group estimation (MG) method is the best method for parameter estimation than the (FGLS) method. Also, the (MG) appeared to be the best and best method for estimating sub-parameters for each cross-section (country).
The research took the spatial autoregressive model: SAR and spatial error model: SEM in an attempt to provide practical evidence that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial and that includes all of the spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. The spatial analysis had been applied to Iraq Household Socio-Economic Survey: IHS
... Show MoreIn this study, the stress-strength model R = P(Y < X < Z) is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used to estimate the parameters namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.
The purpose of this paper is applying the robustness in Linear programming(LP) to get rid of uncertainty problem in constraint parameters, and find the robust optimal solution, to maximize the profits of the general productive company of vegetable oils for the year 2019, through the modify on a mathematical model of linear programming when some parameters of the model have uncertain values, and being processed it using robust counterpart of linear programming to get robust results from the random changes that happen in uncertain values of the problem, assuming these values belong to the uncertainty set and selecting the values that cause the worst results and to depend buil
... Show MoreMixture experiments are response variables based on the proportions of component for this mixture. In our research we will compare the scheffʼe model with the kronecker model for the mixture experiments, especially when the experimental area is restricted.
Because of the experience of the mixture of high correlation problem and the problem of multicollinearity between the explanatory variables, which has an effect on the calculation of the Fisher information matrix of the regression model.
to estimate the parameters of the mixture model, we used the (generalized inverse ) And the Stepwise Regression procedure
... Show MoreIn general, researchers and statisticians in particular have been usually used non-parametric regression models when the parametric methods failed to fulfillment their aim to analyze the models precisely. In this case the parametic methods are useless so they turn to non-parametric methods for its easiness in programming. Non-parametric methods can also used to assume the parametric regression model for subsequent use. Moreover, as an advantage of using non-parametric methods is to solve the problem of Multi-Colinearity between explanatory variables combined with nonlinear data. This problem can be solved by using kernel ridge regression which depend o
... Show MoreThe research aims to provide a method to measure the fair value of the most environmentally friendly of Iraq and through the application of method of measuring the fair value of the company garments contribute to mixed as the company is of the economic units of the industrial sector and included in the Iraqi market for securities as a profit and distributes profits to shareholders since the method of measurement of the fair value based on the divided profits as toxic in a deduction of Cash Dividends cash for measuring fair value, and will also be in this research to clarify the disclosure of accounting for fair value and choose the method of disclosure most appropriate to the beneficiaries of accounting disclosure, as will be cho
... Show MoreAbstract
The research Compared two methods for estimating fourparametersof the compound exponential Weibull - Poisson distribution which are the maximum likelihood method and the Downhill Simplex algorithm. Depending on two data cases, the first one assumed the original data (Non-polluting), while the second one assumeddata contamination. Simulation experimentswere conducted for different sample sizes and initial values of parameters and under different levels of contamination. Downhill Simplex algorithm was found to be the best method for in the estimation of the parameters, the probability function and the reliability function of the compound distribution in cases of natural and contaminateddata.
... Show More
In this paper, we introduce three robust fuzzy estimators of a location parameter based on Buckley’s approach, in the presence of outliers. These estimates were compared using the variance of fuzzy numbers criterion, all these estimates were best of Buckley’s estimate. of these, the fuzzy median was the best in the case of small and medium sample size, and in large sample size, the fuzzy trimmed mean was the best.
Writing plays an effective role in developing one's thinking and
enhancing Learning. It is, in fact, a means of widening one's own views about
the world for the numerous uses that it can serve (Samuel, 1988:28).
In regard to the unquestionable significance of writing in the teaching –
Learning process, the traditional approach seems to be far from being able to
put such significance into practice. Traditionalists give priority to formulating
students' ideas before using prescribed rhetorical framework and then
submitting the written product for grading. Emphasis is, therefore, limited to the
prewriting stage where a certain topic is explored, and the role of the teacher is
confined to assigning the topic and
Recently Tobit Quantile Regression(TQR) has emerged as an important tool in statistical analysis . in order to improve the parameter estimation in (TQR) we proposed Bayesian hierarchical model with double adaptive elastic net technique and Bayesian hierarchical model with adaptive ridge regression technique .
in double adaptive elastic net technique we assume different penalization parameters for penalization different regression coefficients in both parameters λ1and λ2 , also in adaptive ridge regression technique we assume different penalization parameters for penalization different regression coefficients i
... Show More