Helps to use the mechanics of organizational agility in improving product quality by reducing waste or reduce it by removing activities that do not add value, which is the main reason for inefficiency and low productivity and increase costs, so the difficulty of changing administrative decisions to cope with internal and external changes to keep up with market trends renewable are the basic issue that research seeks to be addressed through the adoption of mechanisms of organizational agility, which will be reflected in bottom line in a positive way in improving the quality of products, and thus lies Applied important to look at the light of the results achieved and in which they can know the nature of the relationship between the current research variables, which help to find ways to increase the perception in the importance of the mechanics of the organizational agility and that lead to the improvement of the quality of products, as the aim of the research to develop the mechanics are relatively specific measures to cope with internal and external changes in the company researched and applied research in Numan public company and was named the plastics industry section of a sample to the research, has confirmed the search results to own the company's regulatory mechanisms are not required level, has been improved and a number of positive changes, which led to reduce defective rates in the research sample products, and improve the level of quality, as well as increased external customer satisfaction rates, and this leads to the conclusion that the company has achieved aside the mechanics of organizational agility, but not at the required level, as the company continues to operate at rates defective 3%, and the emergence of defective rates after the arrival of the product the customer, has recommended search the adoption of the company's model is a conceptual proposal in order to ensure that the renewable requirements of customers, and rapid response to internal and external change.
Due to the lack of vehicle-to-infrastructure (V2I) communication in the existing transportation systems, traffic light detection and recognition is essential for advanced driver assistant systems (ADAS) and road infrastructure surveys. Additionally, autonomous vehicles have the potential to change urban transportation by making it safe, economical, sustainable, congestion-free, and transportable in other ways. Because of their limitations, traditional traffic light detection and recognition algorithms are not able to recognize traffic lights as effectively as deep learning-based techniques, which take a lot of time and effort to develop. The main aim of this research is to propose a traffic light detection and recognition model based on
... Show MoreThis study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreThe automatic estimation of speaker characteristics, such as height, age, and gender, has various applications in forensics, surveillance, customer service, and many human-robot interaction applications. These applications are often required to produce a response promptly. This work proposes a novel approach to speaker profiling by combining filter bank initializations, such as continuous wavelets and gammatone filter banks, with one-dimensional (1D) convolutional neural networks (CNN) and residual blocks. The proposed end-to-end model goes from the raw waveform to an estimated height, age, and gender of the speaker by learning speaker representation directly from the audio signal without relying on handcrafted and pre-computed acou
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreCryptography is the process of transforming message to avoid an unauthorized access of data. One of the main problems and an important part in cryptography with secret key algorithms is key. For higher level of secure communication key plays an important role. For increasing the level of security in any communication, both parties must have a copy of the secret key which, unfortunately, is not that easy to achieve. Triple Data Encryption Standard algorithm is weak due to its weak key generation, so that key must be reconfigured to make this algorithm more secure, effective, and strong. Encryption key enhances the Triple Data Encryption Standard algorithm securities. This paper proposed a combination of two efficient encryption algorithms
... Show MoreIn this research paper, a new blind and robust fingerprint image watermarking scheme based on a combination of dual-tree complex wavelet transform (DTCWT) and discrete cosine transform (DCT) domains is demonstrated. The major concern is to afford a solution in reducing the consequence of geometric attacks. It is due to the fingerprint features that may be impacted by the incorporated watermark, fingerprint rotations, and displacements that result in multiple feature sets. To integrate the bits of the watermark sequence into a differential process, two DCT-transformed sub-vectors are implemented. The initial sub-vectors were obtained by sub-sampling in the host fingerprint image of both real and imaginary parts of the DTCWT wavelet coeffi
... Show MoreFace recognition is a type of biometric software application that can identify a specific
individual in a digital image by analyzing and comparing patterns. It is the process of
identifying an individual using their facial features and expressions.
In this paper we proposed a face recognition system using Stationary Wavelet Transform
(SWT) with Neural Network, the SWT are applied into five levels for feature facial
extraction with probabilistic Neural Network (PNN) , the system produced good results
and then we improved the system by using two manner in Neural Network (PNN) and
Support Vector Machine(SVM) so we find that the system performance is more better
after using SVM where the result shows the performance o