Preferred Language
Articles
/
jeasiq-2350
Semi Parametric Logistic Regression Model with the Outputs Representing Trapezoidal Intuitionistic Fuzzy Number
...Show More Authors

In this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.

the model was estimated on simulation data when sample sizes 25,50 and 100, as the parametric part was estimated by two methods of estimation, are fuzzy ordinary least squares estimators FOLSE method and suggested fuzzy weighted least squares estimators SFWLSE , while  the non-parametric part is estimated by Nadaraya Watson estimation and Nearest Neighbor estimator. The results were the fuzzy ordinary least squares estimators method was better than the suggested fuzzy weighted least squares estimators while, in the non-parametric portion, the Nadaraya Watson estimators had better than Nearest Neighbor estimators to estimate the model

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between Process Control Charts and Fuzzy Multinomial Control Charts with Practical Appliance
...Show More Authors

     The control charts are one of the scientific technical statistics tools that will be used to control of production and always contained from three lines  central line and upper, lower lines to control quality of production and represents set of numbers so finally the operating productivity under control or nor than depending on the actual observations. Some times to calculating the control charts are not accurate and not confirming, therefore the Fuzzy Control Charts are using instead of Process Control Charts so this method is more sensitive, accurate and economically for assisting decision maker to control the operation system as early time. In this project will be used set data fr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Properties of Fuzzy Compact Linear Operators on Fuzzy Normed Spaces
...Show More Authors

In this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison Between Classic Local Least Estimatop And Bayesian Methoid For Estimating Semiparametric Logistic Regression Model
...Show More Authors

Semi-parametric models analysis is one of the most interesting subjects in recent studies due to give an efficient model estimation. The problem when the response variable has one of two values either 0 ( no response) or one – with response which is called the logistic regression model.

We compare two methods Bayesian and . Then the results were compared using MSe criteria.

A simulation had been used to study the empirical behavior for the Logistic model , with  different sample sizes and variances. The results using represent that the Bayesian method is better than the   at small samples sizes.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Fuzzy Real Pre-Hilbert Space and Some of Their Properties
...Show More Authors

In this work, two different structures are proposed which is fuzzy real normed space (FRNS) and fuzzy real Pre-Hilbert space (FRPHS). The basic concept of fuzzy norm on a real linear space is first presented to construct  space, which is a FRNS with some modification of the definition introduced by G. Rano and T. Bag. The structure of fuzzy real Pre-Hilbert space (FRPHS) is then presented which is based on the structure of FRNS. Then, some of the properties and related concepts for the suggested space FRN such as -neighborhood, closure of the set  named , the necessary condition for separable, fuzzy linear manifold (FLM) are discussed. The definition for a fuzzy seminorm on  is also introduced with the prove that a fuzzy seminorm on

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
The use of the Principal components and Partial least squares methods to estimate the parameters of the logistic regression model in the case of linear multiplication problem
...Show More Authors

Abstract

  The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable.                                                                                  &nb

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Proposed method to estimate missing values in Non - Parametric multiple regression model
...Show More Authors

In this paper, we will provide a proposed method to estimate missing values for the Explanatory variables for Non-Parametric Multiple Regression Model and compare it with the Imputation Arithmetic mean Method, The basis of the idea of this method was based on how to employ the causal relationship between the variables in finding an efficient estimate of the missing value, we rely on the use of the Kernel estimate by Nadaraya – Watson Estimator , and on Least Squared Cross Validation (LSCV) to estimate the Bandwidth, and we use the simulation study to compare between the two methods.

 

View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Using the Logistic Regression Model in Studding the Assistant Factors to Diagnose Bladder Cancer
...Show More Authors

The cancer is one of the biggest health problems that facing the world . And  the bladder cancer has a special place among the most spread cancers in Arab countries specially in Iraq and Egypt(2) . It is one of the diseases which can be treated and cured if it is diagnosed early . This research is aimed at studying the assistant factors that diagnose bladder cancer such as (patient's age , gender , and other major complains of hematuria , burning or pain during urination and micturition disorders) and then determine which factors are the most effective in the possibility of diagnosing this disease by using the statistical model (logistic regression model) and depending on a random sample of (128) patients . After

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Application the generalized estimating equation Method (GEE) to estimate of conditional logistic regression model for repeated measurements
...Show More Authors

Conditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy Multi-Objective Capacitated Transportation Problem with Mixed Constraints using different forms of membership functions
...Show More Authors

In this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.

View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Distinguishing Shapes of Breast Cancer Masses in Ultrasound Images by Using Logistic Regression Model
...Show More Authors

The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of

... Show More
View Publication Preview PDF
Crossref