Preferred Language
Articles
/
jeasiq-2350
Semi Parametric Logistic Regression Model with the Outputs Representing Trapezoidal Intuitionistic Fuzzy Number
...Show More Authors

In this paper, the fuzzy logic and the trapezoidal fuzzy intuitionistic number were presented, as well as some properties of the trapezoidal fuzzy intuitionistic number and semi- parametric logistic regression model when using the trapezoidal fuzzy intuitionistic number. The output variable represents the dependent variable sometimes cannot be determined in only two cases (response, non-response)or (success, failure) and more than two responses, especially in medical studies; therefore so, use a semi parametric logistic regression model with the output variable (dependent variable) representing a trapezoidal fuzzy intuitionistic number.

the model was estimated on simulation data when sample sizes 25,50 and 100, as the parametric part was estimated by two methods of estimation, are fuzzy ordinary least squares estimators FOLSE method and suggested fuzzy weighted least squares estimators SFWLSE , while  the non-parametric part is estimated by Nadaraya Watson estimation and Nearest Neighbor estimator. The results were the fuzzy ordinary least squares estimators method was better than the suggested fuzzy weighted least squares estimators while, in the non-parametric portion, the Nadaraya Watson estimators had better than Nearest Neighbor estimators to estimate the model

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Hydrology
Complementary data-intelligence model for river flow simulation
...Show More Authors

View Publication
Crossref (80)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 20 2018
Journal Name
Al-academy
Achieving an Iraqi model in contemporary fashion design
...Show More Authors

The Iraqi outfit is characterized by special features and identity that are closely related to the traditions, customs, religious and social beliefs and other references of the Iraqi environment and its factors affecting the individual and society. Every place in Iraq has its own uniform, which differs in terms of its artistic, aesthetic and functional components from place to place.

The abaya, especially worn by women, is especially distinct in terms of the design of the uniform, the nature of the cloth made of it, as well as the color of the abaya, which is dominated by black in most designs. The Dar Al-Taros Center and Textile Research initiated the construction of theoretical and practical bases in the design of contemporary

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 17 2022
Journal Name
Applied Sciences
A Hybrid Artificial Intelligence Model for Detecting Keratoconus
...Show More Authors

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Modified Mathematical Model of Tumor Treatment by Radiotherapy
...Show More Authors

In this research, a mathematical model of tumor treatment by radiotherapy is studied and a new modification for the model is proposed as well as introducing the check for the suggested modification. Also the stability of the modified model is analyzed in the last section.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Agile manufacturing assessment model using multi-grade evaluation
...Show More Authors

In unpredicted industrial environment, being able to adapt quickly and effectively to the changing is key in gaining a competitive advantage in the global market. Agile manufacturing evolves new ways of running factories to react quickly and effectively to changing markets, driven by customized requirement. Agility in manufacturing can be successfully achieved via integration of information system, people, technologies, and business processes. This article presents the conceptual model of agility in three dimensions named: driving factor, enabling technologies and evaluation of agility in manufacturing system. The conceptual model was developed based on a review of the literature. Then, the paper demonstrates the agility

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Oct 07 2019
Journal Name
Construction Innovation
A hybrid conceptual model for BIM in FM
...Show More Authors
Purpose

The purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.

Design/methodology/approach
... Show More
View Publication
Scopus (30)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Sat Jun 03 2023
Journal Name
Iraqi Journal Of Science
Local Bifurcation of Four Species Syn–Ecosymbiosis model
...Show More Authors

In this paper, the conditions of occurrence of the local bifurcation (such as saddle-node, transcritical and pitchfork) near each of the equilibrium points of a mathematical model consists from four-species Syn- Ecosymbiosis are established.

View Publication Preview PDF
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (2)
Scopus Crossref