Preferred Language
Articles
/
jeasiq-2275
Comparing Some of Robust the Non-Parametric Methods for Semi-Parametric Regression Models Estimation
...Show More Authors

In this research, some robust non-parametric methods were used to estimate the semi-parametric regression model, and then  these methods were compared using the MSE comparison criterion, different sample sizes, levels of variance, pollution rates, and three different models were used. These methods are S-LLS S-Estimation -local smoothing, (M-LLS)M- Estimation -local smoothing, (S-NW) S-Estimation-NadaryaWatson Smoothing, and (M-NW) M-Estimation-Nadarya-Watson Smoothing.

The results in the first model proved that the (S-LLS) method was the best in the case of large sample sizes, and small sample sizes showed that the (M-LLS) method was the best, while the second model showed in general that the S-LLS method was the best in addition to the method M-LLS was the best in some cases of sample sizes and at different levels of variance. As for the third model, it was shown through the results that in most cases the S-LLS method was the best in addition to the M-LLS method which was better in some cases of sample sizes and at different levels of variance.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some of reliability and Hazard estimation methods for Rayleigh logarithmic distribution using simulation with application
...Show More Authors

The question of estimation took a great interest in some engineering, statistical applications, various applied, human sciences, the methods provided by it helped to identify and accurately the many random processes.

In this paper, methods were used through which the reliability function, risk function, and estimation of the distribution parameters were used, and the methods are (Moment Method, Maximum Likelihood Method), where an experimental study was conducted using a simulation method for the purpose of comparing the methods to show which of these methods are competent in practical application This is based on the observations generated from the Rayleigh logarithmic distribution (RL) with sample sizes

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy Robust Estimation For Location Parameter
...Show More Authors

 In this paper, we introduce three robust fuzzy estimators of a location parameter based on Buckley’s approach, in the presence of outliers. These estimates were compared using the variance of fuzzy numbers criterion, all these estimates were best of Buckley’s estimate. of these, the fuzzy median was the best in the case of small and medium sample size, and in large sample size, the fuzzy trimmed mean was the best.

View Publication Preview PDF
Crossref
Publication Date
Sun Apr 01 2012
Journal Name
مجلة الإدارة والاقتصاد
مقارنة لبعض الطرائق المعلمية واللامعلمية لتقدير دالة المعولية باستخدام المحاكاة
...Show More Authors

يھدف البحث الى اجراء تقدير دالة المعولية لتوزيــع ويبل ذي المعلمتين بالطرائـق المعلميــة والمتمثلة بـ (NWLSM,RRXM,RRYM,MOM,MLM (، وكذلك اجراء تقدير لدالة المعولية بالطرائق الالمعلمية والمتمثلة بـ . (EM, PLEM, EKMEM, WEKM, MKMM, WMR, MMO, MMT) وتم استخدام اسلوب المحاكاة لغرض المقارنة باستخدام حجوم عينات مختلفة (20,40,60,80,100) والوصول الى افضل الطرائق في التقدير باالعتماد على المؤشر االحصائي متوسط مربعات الخطا التكاملي (IMSE(، وقد توصل البحث الى

... Show More
Publication Date
Wed Sep 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Application
Suggested methods for prediction using semiparametric regression function
...Show More Authors

Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m

... Show More
Preview PDF
Scopus
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Semiparametric Bayesian Method with Classical Method for Estimating Systems Reliability using Simulation Procedure
...Show More Authors

               In this research, the semiparametric Bayesian method is compared with the classical  method to  estimate reliability function of three  systems :  k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
strong criminal capabilities، Using simulation .
...Show More Authors

The penalized least square method is a popular method to deal with high dimensional data ,where  the number of explanatory variables is large than the sample size . The properties of  penalized least square method are given high prediction accuracy and making estimation and variables selection

 At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation for the Parameters and Hazard Function of Kummer Beta Generalized Normal Distribution
...Show More Authors

Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Robust Queues Models and its Role in Improving Performance in the City of Medicine / Baghdad Teaching Hospital / Clinic Internal Medicine Advisory
...Show More Authors

The purpose of this research is to a treatment the impact of Views outliers to the estimators of a distributed arrival and service to the theory of queues and estimate the distribution parameters depending on the robust estimators, and when he was outliers greatest impact in the process of estimating the both distributions mentioned parameters, it was necessary to use way to test that does these data contain abnormal values ​​or not? it was used the method ( Tukey ) for this purpose and is of the most popular ways to discover the outliers , it shows that there are views abnormal (outliers ) in the estimators of each of the distributional arrival and service, which have a significant impact on the calculation of these estimato

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 22 2018
Journal Name
Journal Of Economics And Administrative Sciences
Using simulation to compare between parametric and nonparametric transfer function model
...Show More Authors

In this paper, The transfer function model in the time series was estimated using different methods, including parametric Represented by the method of the Conditional Likelihood Function, as well as the use of abilities nonparametric are in two methods  local linear regression and cubic smoothing spline method, This research aims to compare those capabilities with the nonlinear transfer function model by using the style of simulation and the study of two models as output variable and one model as input variable in addition t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
New Versions of Liu-type Estimator in Weighted and non-weighted Mixed Regression Model
...Show More Authors

This paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.

View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref