Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the data type and type of medical study. The probabilistic values obtained from the artificial neural network are used to calculate the net reclassification index (NRI). A program was written for this purpose using the statistical programming language (R), where the mean maximum absolute error criterion (MME) of the net reclassification network index (NRI) was used to compare the methods of specifying the sample size and the presence of the number of different default parameters in light of the value of a specific error margin (ε). To verify the performance of the methods using the comparison criteria above were the most important conclusions were that the Bennett inequality method is the best in determining the optimum sample size according to the number of default parameters and the error margin value
Results showed that the optimum conditions for production of inulunase from isolate Kluyveromyces marxianus AY2 by submerged culture could be achieved by using inulin as carbon source at a concentration of 2% with mixture of yeast extract and ammonium sulphate in a ratio of 1:1 in a concentration of 1% at initial pH 5.5 after incubation for 42 hours at 30ºC.
Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreThirty local fungal isolates according to Aspergillus niger were screened for Inulinase production on synthetic solid medium depending on inulin hydrolysis appear as clear zone around fungal colony. Semi-quantitative screening was performed to select the most efficient isolate for inulinase production. the most efficient isolate was AN20. The optimum condition for enzyme production from A. niger isolate was determined by busing a medium composed of sugar cane moisten with corn steep liquor 5;5 (v/w) at initial pH 5.0 for 96 hours at 30 0C . Enzyme productivity was tested for each of the yeast Kluyveromyces marxianus, the fungus A. niger AN20 and for a mixed culture of A. niger and K. marxianus. The productivity of A. niger gave the highest
... Show MoreWheat straw was modified with malonic acid in order to get low cost adsorbent have a good ability to remove copper and ferric ions from aqueous solutions, chemical modification temperature was 120°C and the time was 12 h. Parameters that affect the adsorption experiments were studied and found the optimum pH were 6 and 5 for copper and iron respectively and the time interval was 120 min and the adsorbent mass was 0.1 g. The values for adsorption isotherms parameters were determined according to Langmuir [qmax were 54.64 and 61.7 mg/g while b values were 0.234 and 0.22 mg/l] , Freundlich [Kf were 16.07 and 18.89 mg/g and n were 2.77 and 3.16], Temkin [B were 0.063 and 0.074 j/mol and At were 0.143 and 1.658 l/g] and for Dubinin-Radushkev
... Show MoreTheresearch took the spatial autoregressive model: SAR and spatial error model: SEM in an attempt to provide a practical evident that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial andthat includes all of them spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. Spatial analysis had
... Show MoreThis paper seeks to study the link between the fundamentalist evidence based on the observance of governance and interests and the ranks of the three legitimate purposes (necessary, need and detailed). The researcher followed the descriptive-analytical approach. The study reached important results, including that the measurement relates to the three ranks, but predominantly attached to measure the meaning of the need and the need, and the measurement of the semi-formal and semi-predominance improvement. Reclamation is considered by the majority of scholars to be authentic if it is related to the necessity and the need, and that it is not acceptable to improve only by a witness who recommends it. The excuses relate to Hajji and Tahini, no
... Show MoreABSTRACT:
Interest rates are one of the important aspects that affect the banking business directly, which is characterized by unstable dynamic dynamics, which must be viewed on a daily and continuous basis through the macroeconomic view, which directly affects the bank’s income realized from loans as interest received or interest paid on its deposits as an expense. Hence the earnings per share. The relationship between interest rates and between net income and earnings per share was measured and a correlation was found between them, and then the effect between them was measured using regression equations and they were applied and th
... Show More
This paper analyses the relationship between selected macroeconomic variables and gross domestic product (GDP) in Saudi Arabia for the period 1993-2019. Specifically, it measures the effects of interest rate, oil price, inflation rate, budget deficit and money supply on the GDP of Saudi Arabia. The method employs in this paper is based on a descriptive analysis approach and ARDL model through the Bounds testing approach to cointegration. The results of the research reveal that the budget deficit, oil price and money supply have positive significant effects on GDP, while other variables have no effects on GDP and turned out to be insignificant. The findings suggest that both fiscal and monetary policies should be fo
... Show MoreThe research aims to determine the mix of production optimization in the case of several conflicting objectives to be achieved at the same time, therefore, discussions dealt with the concept of programming goals and entrances to be resolved and dealt with the general formula for the programming model the goals and finally determine the mix of production optimization using a programming model targets to the default case.
Due to the lack of statistical researches in studying with existing (p) of Exogenous Input variables, and there contributed in time series phenomenon as a cause, yielding (q) of Output variables as a result in time series field, to form conceptual idea similar to the Classical Linear Regression that studies the relationship between dependent variable with explanatory variables. So highlight the importance of providing such research to a full analysis of this kind of phenomena important in consumer price inflation in Iraq. Were taken several variables influence and with a direct connection to the phenomenon and analyzed after treating the problem of outliers existence in the observations by (EM) approach, and expand the sample size (n=36) to
... Show More