Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the data type and type of medical study. The probabilistic values obtained from the artificial neural network are used to calculate the net reclassification index (NRI). A program was written for this purpose using the statistical programming language (R), where the mean maximum absolute error criterion (MME) of the net reclassification network index (NRI) was used to compare the methods of specifying the sample size and the presence of the number of different default parameters in light of the value of a specific error margin (ε). To verify the performance of the methods using the comparison criteria above were the most important conclusions were that the Bennett inequality method is the best in determining the optimum sample size according to the number of default parameters and the error margin value
In this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes n=40,60,100,variances used σ2=0.5,1,1.5 the results for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the
... Show Morethe banks are one of the public services that must be available in the city to ensure easy financial dealings between citizens and state departments and between the state departments with each other and between the citizens themselves and to ensure easy access to it, so it is very important to choose the best location for the bank, which can serve the largest number of The population achieves easy access. Due to the difficulty of obtaining accurate information dealing with the exact coordinates and according to the country's specific projection, the researcher will resort to the default work using some of the files available in the arcview program
Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show More
Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to
... Show MoreThis research aims to clarify the advantages of using the regression method as analytical procedure in the tax audit to reducing the examination cost , time, effort, human and material resources, and represents an applied study in the General Commission of taxes. In order to achieve its objectives the research has used in the theoretical side the descriptive approach (analytical), and in the practical side regression method has been applied to the research sample represented by the soft drinks company that is subject to the tax settlement for the year 2014, where the value of sales has been verified by using the regression method without conductinga comprehensive examination. The most important results of the research indicate that the r
... Show MoreNeighShrink is an efficient image denoising algorithm based on the discrete wavelet
transform (DWT). Its disadvantage is to use a suboptimal universal threshold and identical
neighbouring window size in all wavelet subbands. Dengwen and Wengang proposed an
improved method, which can determine an optimal threshold and neighbouring window size
for every subband by the Stein’s unbiased risk estimate (SURE). Its denoising performance is
considerably superior to NeighShrink and also outperforms SURE-LET, which is an up-todate
denoising algorithm based on the SURE. In this paper different wavelet transform
families are used with this improved method, the results show that Haar wavelet has the
lowest performance among
Circular data (circular sightings) are periodic data and are measured on the unit's circle by radian or grades. They are fundamentally different from those linear data compatible with the mathematical representation of the usual linear regression model due to their cyclical nature. Circular data originate in a wide variety of fields of scientific, medical, economic and social life. One of the most important statistical methods that represents this data, and there are several methods of estimating angular regression, including teachers and non-educationalists, so the letter included the use of three models of angular regression, two of which are teaching models and one of which is a model of educators. ) (DM) (MLE) and circular shrinkage mod
... Show MoreSix house-hold Abyssinian pumps distributed in different villages of Mansoura (Mans-I, Mans-II and Mans-III) and Talkha (Talk-I, Talk-II and Talk-III) cities, Egypt, have been selected for regular seasonal water quality assessment during 2017. Water samples have been collected within the mid-periods of four seasons Standard assessment tools were employed for the integrated water quality assessment including Water Quality Index (WQI) and ISO standard algal toxicity test. WQI displayed remarkable local and seasonal variations with excellent (≥ 90) and good (70 - 89) only recorded for water samples collected from Mans-I pump located in sparsely populated area and far 50 meters only from the eastern (Damietta) branch of Nile River. WQI of
... Show MoreThe main purpose of this investigation is to evaluate the concentrations of six essential metals (Na+, Mg2+, K+, Ca2+, Fe2+ and Zn2+) in saffron and a farm soil using the neutron activation analysis (NAA) as a nuclear spectrometry method. The stratified random sampling method was used here. The NAA results showed the well uptake of Mg2+, K+, Ca2+, Fe2+, and Zn2+ in saffron, which is lower than the toxicity range. Based on the contamination factor and geoaccumulation index, soil contamination levels were determined uncontaminated by Zn, moderately contaminated by Na+ and Fe2+, and strongly contamin
... Show More