Preferred Language
Articles
/
jeasiq-2148
Using Iterative Reweighting Algorithm and Genetic Algorithm to Calculate The Estimation of The Parameters Of The Maximum Likelihood of The Skew Normal Distribution

Excessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the Maximum Likelihood method. Monte Carlo simulation was used with different skewness levels and sample sizes, and the superiority of the results was compared. It was concluded that (SND) model estimation using (GA) is the best when the samples sizes are small and medium, while large samples indicate that the (IR) algorithm is the best. The study was also done using real data to find the parameter estimation and a comparison between the superiority of the results based on (AIC, BIC, Mse and Def) criteria.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Pre-Processing and Surface Reconstruction of Points Cloud Based on Chord Angle Algorithm Technique

Abstract

Although the rapid development in reverse engineering techniques, 3D laser scanners can be considered the modern technology used to digitize the 3D objects, but some troubles may be associate this process due to the environmental noises and limitation of the used scanners. So, in the present paper a data pre-processing algorithm has been proposed to obtain the necessary geometric features and mathematical representation of scanned object from its point cloud which obtained using 3D laser scanner (Matter and Form) through isolating the noised points. The proposed algorithm based on continuous calculations of chord angle between each adjacent pair of points in point cloud. A MATLAB program has been built t

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Optimizing Blockchain Consensus: Incorporating Trust Value in the Practical Byzantine Fault Tolerance Algorithm with Boneh-Lynn-Shacham Aggregate Signature

The consensus algorithm is the core mechanism of blockchain and is used to ensure data consistency among blockchain nodes. The PBFT consensus algorithm is widely used in alliance chains because it is resistant to Byzantine errors. However, the present PBFT (Practical Byzantine Fault Tolerance) still has issues with master node selection that is random and complicated communication. The IBFT consensus technique, which is enhanced, is proposed in this study and is based on node trust value and BLS (Boneh-Lynn-Shacham) aggregate signature. In IBFT, multi-level indicators are used to calculate the trust value of each node, and some nodes are selected to take part in network consensus as a result of this calculation. The master node is chosen

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Iraqi Journal Of Science
Improved Rijndael Algorithm by Encryption S-Box Using NTRU Algorithm

With the wide developments of computer applications and networks, the security of information has high attention in our common fields of life. The most important issues is how to control and prevent unauthorized access to secure information, therefore this paper presents a combination of two efficient encryption algorithms to satisfy the purpose of information security by adding a new level of encryption in Rijndael-AES algorithm. This paper presents a proposed Rijndael encryption and decryption process with NTRU algorithm, Rijndael algorithm is widely accepted due to its strong encryption, and complex processing as well as its resistance to brute force attack. The proposed modifications are implemented by encryption and decryption Rijndael

... Show More
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Improved Rijndael Algorithm by Encryption S-Box Using NTRU Algorithm

With the wide developments of computer science and applications of networks, the security of information must be increased and make it more complex. The most important issues is how to control and prevent unauthorized access to secure information, therefore this paper presents a combination of two efficient encryption algorithms to satisfy the purpose of information security by adding a new level of encryption in Rijndael-AES algorithm. This paper presents a proposed Rijndael encryption and decryption process with NTRU algorithm, Rijndael algorithm is important because of its strong encryption. The proposed updates are represented by encryption and decryption Rijndael S-Box using NTRU algorithm. These modifications enhance the degree of

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Engineering
Mathematical Modeling of Compaction Curve Using Normal Distribution Functions

Compaction curves are widely used in civil engineering especially for road constructions, embankments, etc. Obtaining the precise amount of Optimum Moisture Content (OMC) that gives the Maximum Dry Unit weight gdmax. is very important, where the desired soil strength can be achieved in addition to economic aspects.

In this paper, three peak functions were used to obtain the OMC and gdmax. through curve fitting for the values obtained from Standard Proctor Test. Another surface fitting was also used to model the Ohio’s compaction curves that represent the very large variation of compacted soil types.

The results showed very good correlation between the values obtained from some publ

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimation for Two Parameters of Gamma Distribution Under Precautionary Loss Function

In the current study, the researchers have been obtained Bayes estimators for the shape and scale parameters of Gamma distribution under the precautionary loss function, assuming the priors, represented by Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation.

Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of Bayes estimator under precautionary loss function with Gamma and Exponential priors is better than other estimates in all cases.

Crossref (5)
Crossref
View Publication Preview PDF
Publication Date
Fri Dec 08 2023
Journal Name
Iraqi Journal Of Science
A Genetic Algorithm for Minimum Set Covering Problem in Reliable and Efficient Wireless Sensor Networks

Densely deployment of sensors is generally employed in wireless sensor networks (WSNs) to ensure energy-efficient covering of a target area. Many sensors scheduling techniques have been recently proposed for designing such energy-efficient WSNs. Sensors scheduling has been modeled, in the literature, as a generalization of minimum set covering problem (MSCP) problem. MSCP is a well-known NP-hard optimization problem used to model a large range of problems arising from scheduling, manufacturing, service planning, information retrieval, etc. In this paper, the MSCP is modeled to design an energy-efficient wireless sensor networks (WSNs) that can reliably cover a target area. Unlike other attempts in the literature, which consider only a si

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
A Semi-Supervised Machine Learning Approach Using K-Means Algorithm to Prevent Burst Header Packet Flooding Attack in Optical Burst Switching Network

Optical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm

... Show More
Scopus (7)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Multi-Objective Genetic Algorithm-Based Technique for Achieving Low-Power VLSI Circuit Partition

     Minimizing the power consumption of electronic systems is one of the most critical concerns in the design of integrated circuits for very large-scale integration (VLSI). Despite the reality that VLSI design is known for its compact size, low power, low price, excellent dependability, and high functionality, the design stage remains difficult to improve in terms of time and power. Several optimization algorithms have been designed to tackle the present issues in VLSI design. This study discusses a bi-objective optimization technique for circuit partitioning based on a genetic algorithm. The motivation for the proposed research is derived from the basic concept that, if some portions of a circuit's system are deactivated during th

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparing the Sequential Nonlinear least squared Method and Sequential robust M method to estimate the parameters of Two Dimensional sinusoidal signal model:

Estimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust  M method after their development through the use of sequential  approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate

... Show More
Crossref
View Publication Preview PDF