The objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the Power Function Distribution (PFD-I) to estimate it. The conjugate prior function of the shape parameter θ was considered as a combination of two different prior distributions such as gamma distribution with Erlang distribution and Erlang distribution with exponential distribution and Erlang distribution with non-informative distribution and exponential distribution with the non-informative distribution. We derived Bayes estimators for shape parameter θ of the Power Function Distribution (PFD-I) according to different loss functions such as the squared error loss function (SELF), the weighted error loss function (WSELF) and modified linear exponential (MLINEX) loss function (MLF), with two different double priors. In addition to the classical estimation (maximum likelihood estimation). We used simulation to get the results of this study, for different cases of the shape parameter of the Power Function Distribution used to generate data for different samples sizes.
In this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).
سنقوم في هذا البحث باشتقاق توزيع الطلب خلال فترة الانتظار لنظام سيطرة على الخزين يخضع فيه الطلب لتوزيع گاما فيما يخضع وقت الانتظار للتوزيع اللوغايتمي الطبيعي، كما سيتم استخراج العزوم الأساسية لهذا المتغير ، الضرورية بدورها لاستخراج بعض مؤشرات النظام المذكور.
المصطلحات المستخدمة: التكامل المحيط، المستوي المركب، تكامل هانكيل، مستوى إعادة الطلب، الوقاية.
The goal (purpose) from using development technology that require mathematical procedure related with high Quality & sufficiency of solving complex problem called Dynamic Programming with in recursive method (forward & backward) through finding series of associated decisions for reliability function of Pareto distribution estimator by using two approach Maximum likelihood & moment .to conclude optimal policy
The distribution of the expanded exponentiated power function EEPF with four parameters, was presented by the exponentiated expanded method using the expanded distribution of the power function, This method is characterized by obtaining a new distribution belonging to the exponential family, as we obtained the survival rate and failure rate function for this distribution, Some mathematical properties were found, then we used the developed least squares method to estimate the parameters using the genetic algorithm, and a Monte Carlo simulation study was conducted to evaluate the performance of estimations of possibility using the Genetic algorithm GA.
The parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.
Maximum likelihood estimation method, uniformly minimum variance unbiased estimation method and minimum mean square error estimation, as classical estimation procedures, are frequently used for parameter estimation in statistics, which assuming the parameter is constant , while Bayes method assuming the parameter is random variable and hence the Bayes estimator is an estimator which minimize the Bayes risk for each value the random observable and for square error lose function the Bayes estimator is the posterior mean. It is well known that the Bayesian estimation is hardly used as a parameter estimation technique due to some difficulties to finding a prior distribution.
The interest of this paper is that
... Show MoreSemi-parametric regression models have been studied in a variety of applications and scientific fields due to their high flexibility in dealing with data that has problems, as they are characterized by the ease of interpretation of the parameter part while retaining the flexibility of the non-parametric part. The response variable or explanatory variables can have outliers, and the OLS approach have the sensitivity to outliers. To address this issue, robust (resistance) methods were used, which are less sensitive in the presence of outlier values in the data. This study aims to estimate the partial regression model using the robust estimation method with the wavel
... Show MoreThe aim of this study is to estimate the parameters and reliability function for kumaraswamy distribution of this two positive parameter (a,b > 0), which is a continuous probability that has many characterstics with the beta distribution with extra advantages.
The shape of the function for this distribution and the most important characterstics are explained and estimated the two parameter (a,b) and the reliability function for this distribution by using the maximum likelihood method (MLE) and Bayes methods. simulation experiments are conducts to explain the behaviour of the estimation methods for different sizes depending on the mean squared error criterion the results show that the Bayes is bet
... Show MoreThe use of Bayesian approach has the promise of features indicative of regression analysis model classification tree to take advantage of the above information by, and ensemble trees for explanatory variables are all together and at every stage on the other. In addition to obtaining the subsequent information at each node in the construction of these classification tree. Although bayesian estimates is generally accurate, but it seems that the logistic model is still a good competitor in the field of binary responses through its flexibility and mathematical representation. So is the use of three research methods data processing is carried out, namely: logistic model, and model classification regression tree, and bayesian regression tree mode
... Show More