In this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real data on the disease of jaundice of children newborns(Infant Jaundice) and it was the best method of estimation It is the Maximum Likelihood because it gave less (MSE).
This research deals with unusual approach for analyzing the Simple Linear Regression via Linear Programming by Two - phase method, which is known in Operations Research: “O.R.”. The estimation here is found by solving optimization problem when adding artificial variables: Ri. Another method to analyze the Simple Linear Regression is introduced in this research, where the conditional Median of (y) was taken under consideration by minimizing the Sum of Absolute Residuals instead of finding the conditional Mean of (y) which depends on minimizing the Sum of Squared Residuals, that is called: “Median Regression”. Also, an Iterative Reweighted Least Squared based on the Absolute Residuals as weights is performed here as another method to
... Show More
The logistic regression model of the most important regression models a non-linear which aim getting estimators have a high of efficiency, taking character more advanced in the process of statistical analysis for being a models appropriate form of Binary Data.
Among the problems that appear as a result of the use of some statistical methods I
... Show MoreThe using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.
In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes. Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo
... Show MoreThe current study was designed to compare some of the vital markers in the sera of diabetic and neuropathy patients via estimating Adipsin, Fasting blood Glucose(FBG), Glycated(HbA1c) hemoglobin, Homeostasis Model Assessment Index (Homa IR ), Cholesterol, High density lipoprotein (HDL), Triglycerides (T.G), Low-density, and lipoprotein (LDL), Very Low Density Lipoprotein (VLDL), in sera of Iraqi patients with diabetes and neuropathy. A total of ninety subjects were divided into three groups: group I (30 diabetic with neuropathy males) and group II (30 diabetic males without neuropathy), and 30 healthy sujects were employed as control group. The results showed a significant decline in Adipsin levels (p>0.05) in neuropathy, T2DM g
... Show MoreIn the presence of multi-collinearity problem, the parameter estimation method based on the ordinary least squares procedure is unsatisfactory. In 1970, Hoerl and Kennard insert analternative method labeled as estimator of ridge regression.
In such estimator, ridge parameter plays an important role in estimation. Various methods were proposed by many statisticians to select the biasing constant (ridge parameter). Another popular method that is used to deal with the multi-collinearity problem is the principal component method. In this paper,we employ the simulation technique to compare the performance of principal component estimator with some types of ordinary ridge regression estimators based on the value of t
... Show MoreAbstract
This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model
... Show MoreLiquefied petroleum gas (LPG), Natural gas (NG) and hydrogen were all used to operate spark ignition internal combustion engine Ricardo E6. A comparison of CO emissions emitted from each case, with emissions emitted from engine fueled with gasoline as a fuel is conducted.
The study was accomplished when engine operated at HUCR for gasoline n(8:1), was compared with its operation at HUCR for each fuel. Compression ratio, equivalence ratio and spark timing were studied at constant speed 1500 rpm.
CO concentrations were little at lean ratios; it appeared to be effected a little with equivalence ratio in this side, at rich side its values became higher, and it appeared to be effected by equivalence ratio highly, the results s
... Show Moreيعتبر الخزين من الامور الهامة في العديد من الشركات حيث يمثل نسبة 50 % من رأس مال المستثمر الكلي مع شدة الضغط المتمثل الى خفض التكاليف الكلية المتمثلة مع انواع اخرى من حالات عدم التأكد (الضبابية) لذا سوف نقدم في هذا البحث نظام اقتصادي للكميات الكلية ( الانتاج الاقتصادي للكميات) للوصول حجم الدفعة المثلى المضببة (FEOQ) عندما تكون كل المعالم في حالة عدم التأكد حيث يتم تحويلها الى فترة واحدة وبعد ذلك الحصول على حجم الد
... Show MoreIn this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes n=40,60,100,variances used σ2=0.5,1,1.5 the results for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the
... Show More