In this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real data on the disease of jaundice of children newborns(Infant Jaundice) and it was the best method of estimation It is the Maximum Likelihood because it gave less (MSE).
This research aims to study the methods of reduction of dimensions that overcome the problem curse of dimensionality when traditional methods fail to provide a good estimation of the parameters So this problem must be dealt with directly . Two methods were used to solve the problem of high dimensional data, The first method is the non-classical method Slice inverse regression ( SIR ) method and the proposed weight standard Sir (WSIR) method and principal components (PCA) which is the general method used in reducing dimensions, (SIR ) and (PCA) is based on the work of linear combinations of a subset of the original explanatory variables, which may suffer from the problem of heterogeneity and the problem of linear
... Show More
In 2020 one of the researchers in this paper, in his first research, tried to find out the Modified Weighted Pareto Distribution of Type I by using the Azzalini method for weighted distributions, which contain three parameters, two of them for scale while the third for shape.This research compared the distribution with two other distributions from the same family; the Standard Pareto Distribution of Type I and the Generalized Pareto Distribution by using the Maximum likelihood estimator which was derived by the researchers for Modified Weighted Pareto Distribution of Type I, then the Mont Carlo method was used–that is one of the simulation manners for generating random samples data in different sizes ( n= 10,30,50), and in di
... Show MoreReliability has an important role in both the industrial and engineering applications. So the need for Reliability Tests appeared are series of tests a discover out of factors that appear through the test, knowledge limit of fit a specifics production addition for getting on goodness of production.
Therefore, the need for research to test for censor data from ( Type II ) for exponential distribution with one parameter and that test it’s (Reliability Growth) includes three curves are Idealized Growth curve estimation parameters and reliability with maximum likelihood method, Duane Growth curve takes estimation parameters and reliability with least squares method, Exponential Reliability Growth Cur
... Show MoreMixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab
... Show MoreThe aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.
Is the subject of the financial structure of the most important topics for which she received the interests of scientific research in the field of financial management , as it emerged several theories about choosing a financial structure appropriate for the facility and behavior change funding them , and in spite of that there is no agreement on a specific theory answer various questions in this regard , and a special issue of the financial structure optimization.
The objective of the research was to identify the most important theories of the structure of modern financial theory has been to focus on the capture of financial firms in two different stages of their life cycle , so-called growth and ma
... Show MoreAbstract
The methods of the Principal Components and Partial Least Squares can be regard very important methods in the regression analysis, whe
... Show MoreThis research introduce a study with application on Principal Component Regression obtained from some of the explainatory variables to limitate Multicollinearity problem among these variables and gain staibilty in their estimations more than those which yield from Ordinary Least Squares. But the cost that we pay in the other hand losing a little power of the estimation of the predictive regression function in explaining the essential variations. A suggested numerical formula has been proposed and applied by the researchers as optimal solution, and vererifing the its efficiency by a program written by the researchers themselves for this porpuse through some creterions: Cumulative Percentage Variance, Coefficient of Determination, Variance
... Show MoreIntended for getting good estimates with more accurate results, we must choose the appropriate method of estimation. Most of the equations in classical methods are linear equations and finding analytical solutions to such equations is very difficult. Some estimators are inefficient because of problems in solving these equations. In this paper, we will estimate the survival function of censored data by using one of the most important artificial intelligence algorithms that is called the genetic algorithm to get optimal estimates for parameters Weibull distribution with two parameters. This leads to optimal estimates of the survival function. The genetic algorithm is employed in the method of moment, the least squares method and the weighted
... Show MoreAbstract
In this research we been estimated the survival function for data suffer from the disturbances and confusion of Iraq Household Socio-Economic Survey: IHSES II 2012 , to data from a five-year age groups follow the distribution of the Generalized Gamma: GG. It had been used two methods for the purposes of estimating and fitting which is the way the Principle of Maximizing Entropy: POME, and method of booting to nonparametric smoothing function for Kernel, to overcome the mathematical problems plaguing integrals contained in this distribution in particular of the integration of the incomplete gamma function, along with the use of traditional way in which is the Maximum Likelihood: ML. Where the comparison on t
... Show More