The research aims to form a clear theoretical philosophy and perceptions about strategic Entrepreneurship through the relationship between high Involvement management practices, the basis in creating that leadership and high-performance work systems as a support tool in achieving them according to the proposals (Hitt et al, 2011), in an attempt to generalize theoretical philosophy and put forward how to apply it within The Iraqi environment, and on this basis the problem of the current research was launched to bridge the knowledge gap between the previous proposals and the possibility of their application, aiming to identify the practices of high Involvement management and the possibility of high-performance work systems and their impact in promoting strategic Entrepreneurship. The research adopted the analytical survey of (69) managers in the General Diyala Company to ensure the availability of high containment management practices and high-performance work systems in addition to strategic leadership in them using statistical means, and by relying on that it formed a set of results, the most important of which affects the practices of higher containment management in strategic Entrepreneurship from Through high-performance work systems, we recommend introducing high Involvement management practices, enhancing their programs in the Diyala State Company, and making use of high-performance work systems programs to reach a company that is able to discover opportunities at the right time.
Experiments research is done to determine how saturated stiff clayey soil responds to a single impulsive load. Models made of saturated, stiff clay were investigated. To supply the single pulse energy, various falling weights from various heights were tested using the falling weight deflectometer (FWD). Dynamic effects can range from the major failure of a sensitive sensor or system to the apparent destruction of structures. This study examines the response of saturated stiff clay soil to a single impulsive load (vertical displacement at the soil surface below and beside the bearing plates). Such reactions consist of displacements, velocities, and accelerations caused by the impact occurring at the surface depth induced by the impact loads
... Show MoreThe peculiarity of the theater does not lie in its dramatic content because many literary genres and other artistic styles share with it in this content. The peculiarity of the theater lies in contemplating the drama through what is architectural, and this architectural axis is what distinguishes its character. It is a spatial poetry which is composed by the laws of physics and chemistry, (Weight, height, distance, rhythm, gravity, impulses and chemical excretions). i.e., what cannot be expressed in words. This is a game of space to exchange and organize energy and communicate in space by the living body, which contains the possibilities of the living drawing in space: in the time and place. This research deals with the importance of the
... Show MoreComposite materials are widely used in the engineered assets as aerospace structures, marine and air navigation owing to their high strength/weight ratios. Detection and identification of damage in the composite structures are considered as an important part of monitoring and repairing of structural systems during the service to avoid instantaneous failure. Effective cost and reliability are essential during the process of detecting. The Lamb wave method is an effective and sensitive technique to tiny damage and can be applied for structural health monitoring using low energy sensors; it can provide good information about the condition of the structure during its operation by analyzing the propagation of the wave in the
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreKE Sharquie, HR Al-Hamamy, AA Noaimi, KA Ali, Journal of Cosmetics, Dermatological Sciences and Applications, 2015 - Cited by 3
This work investigates the impacts of eccentric-inclined load on ring footing performance resting on treated and untreated weak sandy soil, and due to the reduction in the footing carrying capacity due to the combinations of eccentrically-inclined load, the geogrid was used as reinforcement material. Ring radius ratio and reinforcement depth ratio parameters were investigated. Test outcomes showed that the carrying capacity of the footing decreases with the increment in the eccentric-inclined load and footing radius ratio. Furthermore, footing tilt and horizontal displacement increase with increasing the eccentricity and inclination angle, respectively. At the same time, the increment in the horizontal displacement due t
... Show MoreThis paper aims to study the chemical degradation of Brilliant Green in water via photo-Fenton (H2O2/Fe2+/UV) and Fenton (H2O2/Fe2+) reaction. Fe- B nano particles are applied as incrustation in the inner wall surface of reactor. The data form X- Ray diffraction (XRD) analysis that Fe- B nanocomposite catalyst consist mainly of SiO2 (quartz) and Fe2O3 (hematite) crystallites. B.G dye degradation is estimated to discover the catalytic action of Fe- B synthesized surface in the presence of UVC light and hydrogen peroxide. B.G dye solution with 10 ppm primary concentration is reduced by 99.9% under the later parameter 2ml H2O2, pH= 7, temperature =25°C within 10 min. It is clear that pH of the solution affects the photo- catalytic degradation
... Show MoreThe possibility of using activated carbon developed from date palm seeds wastes as a permeable reactive barrier (PRB) to remove copper from polluted shallow groundwater was investigated. The activated carbon has been developed from date palm seeds by dehydrating methods using concentrated sulfuric acid. Batch tests were performed to characterize the equilibrium sorption properties of new activated carbon in copper-containing aqueous solutions, while the sandy soil (aquifer) was assumed to be inert. Under the studied conditions, the Langmuir isotherm model gives a better fit for the sorption data of copper by activated carbon than other models. At a pilot scale, One-dimensional column experiments were performed, and an integrated model ba
... Show More