Preferred Language
Articles
/
jeasiq-2018
Estimate The Survival Function By Using The Genetic Algorithm
...Show More Authors

  Survival analysis is the analysis of data that are in the form of times from the origin of time until the occurrence of the end event, and in medical research, the origin of time is the date of registration of the individual or the patient in a study such as clinical trials to compare two types of medicine or more if the endpoint It is the death of the patient or the disappearance of the individual. The data resulting from this process is called survival times. But if the end is not death, the resulting data is called time data until the event. That is, survival analysis is one of the statistical steps and procedures for analyzing data when the adopted variable is time to event and time. It could be days, weeks, months, or years from the start of the term registration until the event.

  This research is concerned with the question of estimating the survival function of observational data using one of the most important artificial intelligence algorithms which is the genetic algorithm and that In order to obtain optimum estimates for Weibull distribution parameters, this, in turn, is reflected in the estimation of survival function, whereby the genetic algorithm is employed in the maximum likelihood method, moment method, the least-squares method and the modified weighted least squares method. And for the capabilities of more efficient than traditional methods, and then will be a comparison between the roads depending on the experimental side is evaluated the best way depending on mean square error criterion of survival function, it will also be applied methods on the fact that data for patients with lung cancer and bronchitis.

The study found that the best way to estimate the Weibull distribution parameters and the survival function produced by the experimental side is the hybrid method of the least squares using the genetic algorithm.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Low Cost Hardware Back Propagation Algorithm
...Show More Authors

The first successful implementation of Artificial Neural Networks (ANNs) was published a little over a decade ago. It is time to review the progress that has been made in this research area. This paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of ANNs. Different implementation techniques and design issues are discussed, such as obtaining a suitable activation function and numerical truncation technique trade-off, the improvement of the learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English Digit Numbers NN has four layers of 70 nodes (neurons) o

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Low Cost Hardware Back Propagation Algorithm
...Show More Authors

The first successful implementation of Artificial Neural Networks (ANNs) was published a little over a decade ago. It is time to review the progress that has been made in this research area. This paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of ANNs. Different implementation techniques and design issues are discussed, such as obtaining a suitable activation function and numerical truncation technique trade-off, the improvement of the learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English Digit Numbers NN has four layers of 70 nodes (neurons) o

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Grey Wolf Optimization Algorithm: A Survey
...Show More Authors

     The Gray Wolf Optimizer (GWO) is a population-based meta-heuristic algorithm  that belongs to the family of swarm intelligence algorithms inspired by the social behavior of gray wolves, in particular the social hierarchy and hunting mechanism. Because of its simplicity, flexibility, and few parameters to be tuned, it has been applied to a wide range of optimization problems. And yet it has some disadvantages, such as poor exploration skills, stagnation at local optima, and slow convergence speed. Therefore, different variants of GWO have been proposed and developed to address these disadvantages. In this article, some literature, especially from the last five years, has been reviewed and summarized by well-known publishers. Fir

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
SBOA: A Novel Heuristic Optimization Algorithm
...Show More Authors

A new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducte

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between Bayesian Method and Full Maximum Likelihood to estimate Poisson regression model hierarchy and its application to the maternal deaths in Baghdad
...Show More Authors

Abstract:

 This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.

The comparison was done by  simulation  using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the  Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood  with sample size  (n = 30) is the best to represent the maternal mortality data after it has been reliance value param

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A comparative study of Gaussian mixture algorithm and K-means algorithm for efficient energy clustering in MWSN
...Show More Authors

Wireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Some Parametric and Non –parametric Methods To Estimate Median Effective Dose ( ED5
...Show More Authors

            In this paper the research represents an attempt of expansion in using the parametric and non-parametric estimators to estimate the median effective dose ( ED50 ) in the quintal bioassay and comparing between  these methods . We have Chosen three estimators for Comparison. The first estimator is
( Spearman-Karber )  and the second estimator is ( Moving Average ) and The Third estimator  is ( Extreme Effective Dose ) .
We used a minimize Chi-square as a parametric method. We made a Comparison for these estimators by calculating the mean square error of (ED50) for each one of them and comparing it with the optimal the mean square

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 26 2022
Journal Name
Aims Geosciences
Calculation and determination of radioactivity in the old district of Najaf by using the track detector CR-39 and geographical information systems (GIS) methods
...Show More Authors

This research aims to study the radiation concentration distribution of the old District of Najaf (Iraq), where 15 samples were taken from featured sites in the District, which represents archaeological, religious, and heritage sites. Track detector CR-39 was used to calculate the concentration of three different soil weights for each sample site after being exposed for a month. Geographical information systems (GIS) were used to distribute the radioactive concentration on the sites of the samples, where two interpolation methods, namely the inverse distance weight method (IDW) and the triangle irregular network method (NIT), to study the distribution of the radioactivity concentration. The study showed that the western part of the district

... Show More
View Publication Preview PDF
Crossref (1)
Clarivate Crossref
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Numerical Solutions for the Optimal Control Governing by Variable Coefficients Nonlinear Hyperbolic Boundary Value Problem Using the Gradient Projection, Gradient and Frank Wolfe Methods
...Show More Authors

This paper is concerned with studying the numerical solution for the discrete classical optimal control problem (NSDCOCP) governed by a variable coefficients nonlinear hyperbolic boundary value problem (VCNLHBVP). The DSCOCP is solved by using the Galerkin finite element method (GFEM) for the space variable and implicit finite difference scheme (GFEM-IFDS) for the time variable to get the NS for the discrete weak form (DWF) and for the discrete adjoint weak form (DSAWF) While, the gradient projection method (GRPM), also called the gradient method (GRM), or the Frank Wolfe method (FRM) are used to minimize the discrete cost function (DCF) to find the DSCOC. Within these three methods, the Armijo step option (ARMSO) or the optimal step opt

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Feb 25 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Planning and implementation of the audit process by using the styles of time management and its impact on the quality of the audit process: Applied Research in the Federal Board of Supreme Audit
...Show More Authors

Witnessing the global arena many changes in the political, economic, social, scientific and technological have left their mark on the world as a whole, these changes require necessarily Advancement of the profession of auditing, and improve their performance, especially after the mixer skepticism the health of approach and the method followed by a check in the major audit firms global view as for the external audit of an active role in providing services to members of the community in various sectors, were to be provide these services to the highest level of quality.To ensure the quality of the audit process to be a proper planning is based on a scientific basis to be the substrate a strong underlying different audit works, and if planni

... Show More
View Publication Preview PDF
Crossref