The research aims to identify how to enhance the quality of the human resources, focusing on four dimensions (efficiency, effectiveness, flexibility, and reliability), by adopting an adventure learning method that combines theoretical and applied aspects at the same time, when developing human resources and is applied using information technology, and that Through its dimensions, which are (cooperation, interaction, communication, and understanding), as the research problem indicated a clear deficiency in the cognitive perception of the mechanism of employing adventure learning dimensions in enhancing human resources quality, so the importance of research was to present treatments and proposals to reduce this problem. To achieve the goals of the research, the descriptive analytical approach was adopted. The researcher used the questionnaire as the main tool to collect data. As for the research sample, it consisted of (25) individuals from managerial positions in the General Company for Iraqi vegetable oils. Among the most prominent results that the research came out with is the significance of the correlation and influence relationships between the variables discussed, and here the researcher was able to achieve the scientific implications of the research in proposing a set of solutions to address the problems that the researched organization suffers to the extent of correlation with the researched variables, while the added value and scientific originality of the research were represented by a collection Contemporary variables in the field of human resources management in research, to enrich the academic library with contemporary sources and vital concepts. As for the research findings, they were represented by the presence of the variables discussed within the organization in the field of the application without clearly identifying them. Therefore, the researcher recommended the need to review the experiences of successful organizations in developed countries and transfer their effects to the local environment.
Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN
... Show MoreIn education, exams are used to asses students’ acquired knowledge; however, the manual assessment of exams consumes a lot of teachers’ time and effort. In addition, educational institutions recently leaned toward distance education and e-learning due the Coronavirus pandemic. Thus, they needed to conduct exams electronically, which requires an automated assessment system. Although it is easy to develop an automated assessment system for objective questions. However, subjective questions require answers comprised of free text and are harder to automatically assess since grading them needs to semantically compare the students’ answers with the correct ones. In this paper, we present an automatic short answer grading metho
... Show MoreDeepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreRumors are typically described as remarks whose true value is unknown. A rumor on social media has the potential to spread erroneous information to a large group of individuals. Those false facts will influence decision-making in a variety of societies. In online social media, where enormous amounts of information are simply distributed over a large network of sources with unverified authority, detecting rumors is critical. This research proposes that rumor detection be done using Natural Language Processing (NLP) tools as well as six distinct Machine Learning (ML) methods (Nave Bayes (NB), random forest (RF), K-nearest neighbor (KNN), Logistic Regression (LR), Stochastic Gradient Descent (SGD) and Decision Tree (
... Show MoreA substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MorePalm vein recognition technology is a one of the most effective biometric technologies for personal identification. Palm acquisition techniques are either contact-based or contactless-based. The contactless-based palm vein system is considered more accurate and efficient when used in modern applications, but it may suffer from problems like pose variations and the delay in the matching process. This paper proposes a contactless-based identification system for palm vein that involves two main steps; First, the central region of the palm is cropped using fast extract region of interest algorithm, then the features are extracted and classified using altered structure of Residual Attention Network, which is a developed version of convolution
... Show MoreThe main task of creating new digital images of different skin diseases is to increase the resolution of the specific textures and colors of each skin disease. In this paper, the performance of generative adversarial networks has been optimized to generate multicolor and histological color digital images of a variety of skin diseases (melanoma, birthmarks, and basal cell carcinomas). Two architectures for generative adversarial networks were built using two models: the first is a model for generating new images of dermatology through training processes, and the second is a discrimination model whose main task is to identify the generated digital images as either real or fake. The gray wolf swarm algorithm and the whale swarm alg
... Show MoreThe detection of diseases affecting wheat is very important as it relates to the issue of food security, which poses a serious threat to human life. Recently, farmers have heavily relied on modern systems and techniques for the control of the vast agricultural areas. Computer vision and data processing play a key role in detecting diseases that affect plants, depending on the images of their leaves. In this article, Fuzzy- logic based Histogram Equalization (FHE) is proposed to enhance the contrast of images. The fuzzy histogram is applied to divide the histograms into two subparts of histograms, based on the average value of the original image, then equalize them freely and independently to conserve the brightness of the image. The prop
... Show MoreMPEG-DASH is an adaptive bitrate streaming technology that divides video content into small HTTP-objects file segments with different bitrates. With live UHD video streaming latency is the most important problem. In this paper, creating a low-delay streaming system using HTTP 2.0. Based on the network condition the proposed system adaptively determine the bitrate of segments. The video is coded using a layered H.265/HEVC compression standard, then is tested to investigate the relationship between video quality and bitrate for various HEVC parameters and video motion at each layer/resolution. The system architecture includes encoder/decoder configurations and how to embedded the adaptive video streaming. The encoder includes compression besi
... Show More