Preferred Language
Articles
/
jeasiq-1969
ON DISCRETE WEIBULL DISTRIBUTION

Most of the Weibull models studied in the literature were appropriate for modelling a continuous random variable which assumes the variable takes on real values over the interval [0,∞]. One of the new studies in statistics is when the variables take on discrete values. The idea was first introduced by Nakagawa and Osaki, as they introduced discrete Weibull distribution with two shape parameters q and β where      0 < q < 1 and b > 0. Weibull models for modelling discrete random variables assume only non-negative integer values. Such models are useful for modelling for example; the number of cycles to failure when components are subjected to cyclical loading. Discrete Weibull models can be obtained as the discrete counterparts of either the distribution function or the failure rate function of the standard Weibull model. Which lead to different models. This paper discusses the discrete model which is the counterpart of the standard two-parameter Weibull distribution. It covers the determination of the probability mass function, cumulative distribution function, survivor function, hazard function, and the pseudo-hazard function.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Baghdad Science Journal
The Gumbel- Pareto Distribution: Theory and Applications

In this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.

Scopus (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Comparing Weibull Stress – Strength Reliability Bayesian Estimators for Singly Type II Censored Data under Different loss Functions

     The stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery

... Show More
Scopus (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Best estimation for the Reliability of 2-parameter Weibull Distribution

This Research Tries To Investigate The Problem Of Estimating The Reliability Of Two Parameter Weibull Distribution,By Using Maximum Likelihood Method, And White Method. The Comparison Is done Through Simulation Process Depending On Three Choices Of Models (?=0.8 , ß=0.9) , (?=1.2 , ß=1.5) and (?=2.5 , ß=2). And Sample Size n=10 , 70, 150 We Use the Statistical Criterion Based On the Mean Square Error (MSE) For Comparison Amongst The Methods.

Crossref
View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
On Shrunken Estimation of Generalized Exponential Distribution

This paper deal with the estimation of the shape parameter (a) of Generalized Exponential (GE) distribution when the scale parameter (l) is known via preliminary test single stage shrinkage estimator (SSSE) when a prior knowledge (a0) a vailable about the shape parameter as initial value due past experiences as well as suitable region (R) for testing this prior knowledge.

The Expression for the Bias, Mean squared error [MSE] and Relative Efficiency [R.Eff(×)] for the proposed estimator are derived. Numerical results about beha

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
A Comparative Study on the Double Prior for Reliability Kumaraswamy Distribution with Numerical Solution

This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Estimation for Two Parameters of Weibull Distribution under Generalized Weighted Loss Function

In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).

Crossref
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Physics: Conference Series
Theory and applications of Marshall Olkin Marshall Olkin Weibull distribution
Abstract<p>In probability theory generalizing distribution is an important area. Several distributions are inappropriate for data modeling, either symmetrical, semi-symmetrical, or heavily skewed. In this paper, a new compound distribution with four parameters called Marshall Olkin Marshall Olkin Weibull (MOMOWe) is introduced. Several important statistical properties of new distribution were studied and examined. The estimation of unknown four parameters was carried out according to the maximum likelihood estimation method. The flexibility of MOMOWe distribution is demonstrated by the adoption of two real datasets (semi-symmetric and right-skewed) with different information fitting criteria. Su</p> ... Show More
Scopus (2)
Crossref (4)
Scopus Crossref
View Publication
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods for System Reliability Multi-Components model: Exponentiated Weibull Distribution

        In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through  Monte Carlo simulation technique were made depend on mean squared error (MSE)  criteria

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Estimate the Parallel System Reliability in Stress-Strength Model Based on Exponentiated Inverted Weibull Distribution
Abstract<p>In this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (<italic>R<sub>k</sub> </italic>) contain <italic>K<sup>th</sup> </italic> parallel components in the stress-strength model, when the stress and strength are independent and non-identically random variables and they follow two parameters Exponentiated Inverted Weibull Distribution (EIWD). Comparisons among the proposed estimators were presented depend on simulation established on mean squared error (MSE) criteria.</p>
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sun Sep 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Compared Methods of Generating Both Gamma Distribution and Beta Distribution

Beta Distribution

Abstract

             Gamma and Beta Distributions has very important in practice in various areas of statistical and applications reliability and quality control of production. and There are a number of methods to generate data behave on according to these distribution. and These methods bassic primarily on the shape parameters of each distribution and the relationship between these distributions and their relationship with some other probability distributions.    &nb

... Show More
Crossref
View Publication Preview PDF