Preferred Language
Articles
/
jeasiq-1924
Comparison Between Partial Least Square Regression(PLSR) and Tree Regression by Using Simulation(RT).
...Show More Authors

This research discussed, the process of comparison between the regression model of partial least squares and tree regression, where these models included two types of statistical methods represented by the first type "parameter statistics" of the partial least squares, which is adopted when the number of variables is greater than the number of observations and also when the number of observations larger than the number of variables, the second type is the "nonparametric statistic" represented by tree regression, which is the division of data in a hierarchical way. The regression models for the two models were estimated, and then the comparison between them, where the comparison between these methods was according to a Mean Squares Error (MSE) and using the simulation of the experiment and by taking different sample sizes. where the results of the simulation showed that the regression of partial least squares is best when taking the following contrast variance values (0.01, 0.5, 1) and for all sample sizes, whereas tree regression is the best when it is The variance value is large (5) and for all sample sizes.

                                                                                                                      

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 14 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Comparison Between Different Approaches to Overcome the Multicollinearity Problem in Linear Regression Models
...Show More Authors

    In the presence of multi-collinearity problem, the parameter estimation method based on the ordinary least squares procedure is unsatisfactory. In 1970, Hoerl and Kennard insert analternative method labeled as estimator of ridge regression.

In such estimator, ridge parameter plays an important role in estimation. Various methods were proposed by many statisticians to select the biasing constant (ridge parameter). Another popular method that is used to deal with the multi-collinearity problem is the principal component method. In this paper,we employ the simulation technique to compare the performance of principal component estimator with some types of ordinary ridge regression estimators based on the value of t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
Importance of Banking Merger To Promote Iraqi Banks Faltering and Slow Using The Logistic Regression Model
...Show More Authors

Abstract

The research examined with the importance banking merger to address the situation of Troubled banks in Iraq, Through The use of Logistic Regression Model. . The study attempted to present a conceptual aspect of banking merger and logistic regression, as well as the applied aspect which includes a sample consisting of six private Iraqi banks, and the hypothesis of the study is that the promotion of mergers among banks has positive impacts on improving the efficiency of performance of troubled banks, which contributes to the increase of banking services, raise of their financial indicators and the high liquidity and profits of the new banking entity as it is a way to overcome the prevailing banking crises.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Nadaraya-Watson Estimator a Smoothing Technique for Estimating Regression Function
...Show More Authors

    The using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.

    In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes.  Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Bayes estimators of a multivariate generalized hyperbolic partial regression model
...Show More Authors

View Publication
Scopus (1)
Scopus
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some well- Known methods to estimate the parameter of the proposed method of measurement and the reliability of the distribution function with two parameters Rally by simulation
...Show More Authors

 

 

Abstract

            Rayleigh distribution is one of the important distributions used for analysis life time data, and has applications in reliability study and physical interpretations. This paper introduces four different methods to estimate the scale parameter, and also estimate reliability function; these methods are Maximum Likelihood, and Bayes and Modified Bayes, and Minimax estimator under squared error loss function, for the scale and reliability function of the generalized Rayleigh distribution are obtained. The comparison is done through simulation procedure, t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Using the Logistic Regression Model in Studding the Assistant Factors to Diagnose Bladder Cancer
...Show More Authors

The cancer is one of the biggest health problems that facing the world . And  the bladder cancer has a special place among the most spread cancers in Arab countries specially in Iraq and Egypt(2) . It is one of the diseases which can be treated and cured if it is diagnosed early . This research is aimed at studying the assistant factors that diagnose bladder cancer such as (patient's age , gender , and other major complains of hematuria , burning or pain during urination and micturition disorders) and then determine which factors are the most effective in the possibility of diagnosing this disease by using the statistical model (logistic regression model) and depending on a random sample of (128) patients . After

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Hybrid Framework To Exclude Similar and Faulty Test Cases In Regression Testing
...Show More Authors

 

Regression testing is a crucial phase in the software development lifecycle that makes sure that new changes/updates in the software system don’t introduce defects or don’t affect adversely the existing functionalities. However, as the software systems grow in complexity, the number of test cases in regression suite can become large which results into more testing time and resource consumption. In addition, the presence of redundant and faulty test cases may affect the efficiency of the regression testing process. Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution data to

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Al-khwarizmi Engineering Journal
Noise Removal of ECG Signal Using Recursive Least Square Algorithms
...Show More Authors

This paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.

View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Estimation the reliability function of multi state system by using Direct Partial Logic Derivative
...Show More Authors

In this research is estimated the function of reliability dynamic of multi state systems  and their compounds and for three types of systems (serial, parallel, 2-out-of-3) and about two states (Failure and repair) depending on calculating the structur function allow to describing the behavior of

... Show More
View Publication Preview PDF
Crossref