The implementation of the concept of project scheduling in the organizations generally requires a set of procedures and requirements, So, most important of all is the understanding and knowledge of the tools and techniques which are called the methods of scheduling projects. Consequently, the projects of the municipality administration in the holy governorate of Karbala suffer from the problem of delaying their projects and chaos in the ways of implementation. To provide assistance to this directorate and to demonstrate how to schedule projects using one of the advanced scientific methods that proved their ability to schedule any project and its potential to accelerate the time of completion, as well as ease of use and effectiveness of the results, especially with the introduction of software programs. The study concluded with a number of conclusions, including the delay of most of the projects for their specific times for several reasons, the most important of which is the lack of good planning and scheduling suitable to increase the number and variety of projects, as well as the possibility of reducing the time of completion of the project, And the most important recommendations of the research urged the departments of the municipality and government agencies and committees to prepare the drafts of guessing projects, as well as the companies and contractors, using modern methods and software in the scheduling of projects, and control the time in planning and scheduling projects to ensure that not delayed Properly on time.
This paper presents an efficient system using a deep learning algorithm that recognizes daily activities and investigates the worst falling cases to save elders during daily life. This system is a physical activity recognition system based on the Internet of Medical Things (IoMT) and uses convolutional neural networks (CNNets) that learn features and classifiers automatically. The test data include the elderly who live alone. The performance of CNNets is compared against that of state-of-the-art methods, such as activity windowing, fixed sample windowing, time-weighted windowing, mutual information windowing, dynamic windowing, fixed time windowing, sequence prediction algorithm, and conditional random fields. Th
... Show MoreIn this study, we investigate about the run length properties of cumulative sum (Cusum) and The exponentially weighted moving average (EWMA) control charts, to detect positive shifts in the mean of the process for the poisson distribution with unknown mean. We used markov chain approach to compute the average and the standard deviation for run length for Cusum and EWMA control charts, when the variable under control follows poisson distribution. Also, we used the Cusum and the EWMA control charts for monitoring a process mean when the observations (products are selected from Al_Mamun Factory ) are identically and independently distributed (iid) from poisson distribution i
... Show MoreDue to the lack of statistical researches in studying with existing (p) of Exogenous Input variables, and there contributed in time series phenomenon as a cause, yielding (q) of Output variables as a result in time series field, to form conceptual idea similar to the Classical Linear Regression that studies the relationship between dependent variable with explanatory variables. So highlight the importance of providing such research to a full analysis of this kind of phenomena important in consumer price inflation in Iraq. Were taken several variables influence and with a direct connection to the phenomenon and analyzed after treating the problem of outliers existence in the observations by (EM) approach, and expand the sample size (n=36) to
... Show MoreObjective: To identify of the effect of the different concentrations of the special liquid (for mixing the investment, Gilvest)
and mixed with water/powder ratio on setting time of phosphate–bonded investment.
Method and materials: The present study is (60) specimens made from phosphate bonded investment divided into (4)
groups (control and experimental groups), (15) specimens for each group. The Gillmore needle device is used to setting
time of phosphate bonded investment mixed with different concentration of Gilvest and water.
Results: Showed that there is a high significant difference (P<0.01) between each groups in the ANOVA test and a
significant difference (P<0.05) between the group (A) and control group i
A total of 1453 freshwater fishes, belonging to 14 species of the
family Cyprinidae was collected from Lesser Zab and Greater Zab
rivers in north of Iraq during the period from November 2000 to the
end of November 2001. The inspection of skin, gills and different
internal organs revealed the infection of these fishes with a total of 14
species of Myxobolus which included seven species that represented
their first record in Iraq. These species included M. bulbocordis from
both Barbus sharpeyi and Chondrostoma regium; M. karuni from B
grypus; M. mesopotamiae from B. luteus; M. molnári from B
esocinus; M. pcrsicus from both B. grypus and Cyprinion macrostomum;
M. Shaagani from both B. b
The aim of this paper is to obtain a set of traveling wave solutions for klein –Gorden equation with kerr law non-linearity. More precisely, we apply a new path of popularized homogeneous balance (HB) method in terms of using linear auxiliary equations to find the results of non-linear klein-Gorden equation, which is a fundamental approach to determine competent solutions. The solutions are achieved as the integration of exponential, hyperbolic, trigonometric and rational functions. Besides, some of the solutions are demonstrated by the3D graphics.
Abstract The Object of the study aims to identify the effectiveness of using the 7E’s learning cycle to learn movement chains on uneven bars, for this purpose, we used the method SPSS. On a sample composed (20) students on collage of physical education at the university of Baghdad Chosen as two groups experimental and control group (10) student for each group, and for data collection, we used SPSS After collecting the results and having treated them statistically, we conclude the use 7E’s learning cycle has achieved remarkable positive progress, but it has diverged between to methods, On this basis, the study recommended the necessity of applying 7E’s learning cycle strategy in learning the movement chain on uneven bar
... Show MoreNano gamma alumina was prepared by double hydrolysis process using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, hydroxyle poly acid and CTAB (cetyltrimethylammonium bromide) as templates. Different crystallization temperatures (120, 140, 160, and 180) 0C and calcinations temperatures (500, 550, 600, and 650) 0C were applied. All the batches were prepared at PH equals to 9. XRD diffraction technique and infrared Fourier transform spectroscopy were used to investigate the phase formation and the optical properties of the nano gamma alumina. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the particle size and the
... Show MoreThis research include building mathematical models for aggregating planning and shorting planning by using integer programming technique for planning master production scheduling in order to control on the operating production for manufacturing companies to achieve their objectives of increasing the efficiency of utilizing resources and reduce storage and improving customers service through deliver in the actual dates and reducing delays.
Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show More