The researcher studied transportation problem because it's great importance in the country's economy. This paper which ware studied several ways to find a solution closely to the optimization, has applied these methods to the practical reality by taking one oil derivatives which is benzene product, where the first purpose of this study is, how we can reduce the total costs of transportation for product of petrol from warehouses in the province of Baghdad, to some stations in the Karsh district and Rusafa in the same province. Secondly, how can we address the Domandes of each station by required quantity which is depending on absorptive capacity of the warehouses (quantities supply), And through results reached by the researcher find the best method came after linear programming was the exponential method because it gave a solution closely to the optimization as were the result linear programming (4,357,575), either the of result exponential method was (4,365,061) followed by method Ones Method amounting the total cost (4,371,841 ) and after the result approach (A.S.M) was the total cost (4,372,585) and there were other methods reported in the research gave a high cost compared with the methods mentioned above .
An efficient modification and a novel technique combining the homotopy concept with Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced in this paper . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.
The purpose of this paper is use the Dynamic Programming to solve a deterministic periodic review model for inventory problem and then to find the optimal policies that the company must uses in the purchase or production (in the practical application example the Al Aksa company purchase the generators from out side country).
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.
The research aims to recognize the impact of the training program based on integrating future thinking skills and classroom interaction patterns for mathematics teachers and providing their students with creative solution skills. To achieve the goal of the research, the following hypothesis was formulated: There is no statistically significant difference at the level (0.05) between the mean scores of students of mathematics teachers whose teachers trained according to the proposed training program (the experimental group) and whose teachers were not trained according to the proposed training program (the control group) in Pre-post creative solution skills test. Research sample is consisted of (31) teachers and schools were distribut
... Show MoreThese search summaries in building a mathematical model to the issue of Integer linear Fractional programming and finding the best solution of Integer linear Fractional programming (I.L.F.P) that maximize the productivity of the company,s revenue by using the largest possible number of production units and maximizing denominator objective which represents,s proportion of profits to the costs, thus maximizing total profit of the company at the lowest cost through using Dinkelbach algorithm and the complementary method on the Light industries company data for 2013 and comparing results with Goal programming methods results.
It is clear that the final results of resolution and Dinkelbac
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show MoreBeta Distribution
Abstract
Gamma and Beta Distributions has very important in practice in various areas of statistical and applications reliability and quality control of production. and There are a number of methods to generate data behave on according to these distribution. and These methods bassic primarily on the shape parameters of each distribution and the relationship between these distributions and their relationship with some other probability distributions. &nb
... Show MoreMany production companies suffers from big losses because of high production cost and low profits for several reasons, including raw materials high prices and no taxes impose on imported goods also consumer protection law deactivation and national product and customs law, so most of consumers buy imported goods because it is characterized by modern specifications and low prices.
The production company also suffers from uncertainty in the cost, volume of production, sales, and availability of raw materials and workers number because they vary according to the seasons of the year.
I had adopted in this research fuzzy linear program model with fuzzy figures
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others
... Show More