The problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
The researcher identified the objective of this research Do you know the impact of the way to solve problems in the achievement of the students in the fourth grade prep Islamic Education, and the researcher has identified the limits of the search, and the terms contained in the title researched and then offered the researcher previous studies relate to the subject studied, introduced Studies in Arab and foreign countries dealt with how to solve problems, the researcher identified the methodology discussed public represented by experimental method, and the sample consisted of two groups, one experimental and the other officer, and worked on the set of variables that may affect the results between the two groups in vkavot changers task, th
... Show MoreIn this paper, some estimators for the unknown shape parameter and reliability function of Basic Gompertz distribution have been obtained, such as Maximum likelihood estimator and Bayesian estimators under Precautionary loss function using Gamma prior and Jefferys prior. Monte-Carlo simulation is conducted to compare mean squared errors (MSE) for all these estimators for the shape parameter and integrated mean squared error (IMSE's) for comparing the performance of the Reliability estimators. Finally, the discussion is provided to illustrate the results that summarized in tables.
Ghrelin and leptin are hunger hormones related to type 2 diabetes mellitus (T2DM), and the pathogenesis of T2DM is the abnormality in insulin secretion and insulin resistance (IR). The aim of this study is to evaluate ghrelin and leptin concentrations in blood and to specify the relationship of these hormones as dependent variables with some biochemical and clinical measurements in T2DM patients. In this study, forty one T2DM and forty three non-diabetes mellitus (non-DM) subjects, aged between 40-60 years and with normal weight, were enrolled. Fasting serum ghrelin and leptin were estimated by enzyme-linked immunosorbent assay (ELISA). In our results ghrelin was significantly increased, and leptin was significantly decreased, in T2DM pa
... Show MoreThe research mainly seeks to predict the amounts of non- oil Iraqi exports which concludes ) Food & Animals , Raw materials and non- tanned Leather and fur , Mineral fuels and Lubricating Oil , Chemical substances and amounts , Manufactured goods , Electrical and non - electrical machines , Supplies and Total non- Oil exports ) by using Markov Chain as one of Statistical approach to forecasting in future . In this search We estimate the transliteration probabilities matrix according to Maximum Likelihood on a data collected from central organization for Statistics and information technology represents an index numbers of non- Oil exports amount in Iraq from 2004 to 2015 depending on 2007 as a basic year . Results shown that trend of index
... Show MoreRegression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls sh
... Show MoreThis study was undertaken to introduce a fast, accurate, selective, simple and environment-friendly colorimetric method to determine iron (II) concentration in different lipstick brands imported or manufactured locally in Baghdad, Iraq. The samples were collected from 500-Iraqi dinars stores to establish routine tests using the spectrophotometric method and compared with a new microfluidic paper-based analytical device (µPAD) platform as an alternative to cost-effective conventional instrumentation such as Atomic Absorption Spectroscopy (AAS). This method depends on the reaction between iron (II) with iron(II) selective chelator 1, 10-phenanthroline(phen) in the presence of reducing agent hydroxylamine (HOA) and sodium acetate (NaOAc) b
... Show MoreThis study aims to explore the relationship between the degree of application of digital leadership and the development of administrative work at the University of Tabuk. It further aims to examine the presence of statistically significant differences between the average responses of faculty members and employees at the University of Tabuk regarding the study axes that are attributed to the following variables: (scientific rank, gender, and job), the study used the descriptive approach in its correlative style, and the questionnaire was used as a tool for data collection, as it was applied to a simple random of (310) members of the faculty and staff. University of Tabuk. The results showed that the degree of digital leadership applicatio
... Show MoreAmputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show More