Estimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate linear parameters which represents amplitude . solve non-linear equations using Newton –Raphson method in sequential non-linear least squares method and obtain parameters estimate that represents frequencies and linear parameters which represents amplitude at the same time, and compared this method with sequential robust M method when the signal affected by different types of noise including the normal distribution of the error and the heavy-tailed distributions error, numerical simulation are performed to observe the performance of the estimation methods for different sample size, and various level of variance using a statistical measure of mean square error (MSE), we conclude in general that sequential non-linear least squares method is more efficiency compared to others if we follow the normal and logistic distribution of noise, but if the noise follow Cauchy distribution it was a sequential robust M method based on bi-square weight function is the best in the estimation.
Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreThis study is concerned with organizational learning and its impact on total quality management in the education sector. Organizational learning is a process that provides the educational sector with the ability to adapt and respond rapidly to developments and changes in a better way according to its main dimensions (Mental Models, Personal Mastery, Team Learning, Shared Vision, System Thinking) by adopting the philosophy of Total Quality Management (TQM) in accordance with its basic dimensions (leadership, customer satisfaction, participation of workers, continuous improvement, training and education). The main purpose of this study is to know (the impact of the Senge model of organizational learni
... Show MoreIn present work examined the oxidation desulfurization in batch system for model fuels with 2250 ppm sulfur content using air as the oxidant and ZnO/AC composite prepared by thermal co-precipitation method. Different factors were studied such as composite loading 1, 1.5 and 2.5 g, temperature 25 oC, 30 oC and 40 oC and reaction time 30, 45 and 60 minutes. The optimum condition is obtained by using Tauguchi experiential design for oxidation desulfurization of model fuel. the highest percent sulfur removal is about 33 at optimum conditions. The kinetic and effect of internal mass transfer were studied for oxidation desulfurization of model fuel, also an empirical kinetic model was calculated for model fuels
... Show MoreIn this research, the methods of Kernel estimator (nonparametric density estimator) were relied upon in estimating the two-response logistic regression, where the comparison was used between the method of Nadaraya-Watson and the method of Local Scoring algorithm, and optimal Smoothing parameter λ was estimated by the methods of Cross-validation and generalized Cross-validation, bandwidth optimal λ has a clear effect in the estimation process. It also has a key role in smoothing the curve as it approaches the real curve, and the goal of using the Kernel estimator is to modify the observations so that we can obtain estimators with characteristics close to the properties of real parameters, and based on medical data for patients with chro
... Show MoreThis research aimed to develop a simulation traffic model for an urban street with heterogeneous traffic capable of analyzing different types of vehicles of static and dynamic characteristics based on trajectory analysis that demonstrated psychophysical driver behavior. The base developed model for urban traffic was performed based on the collected field data for the major urban street in Baghdad city. The parameter; CC1 minimum headway (represented the speed-dependent of the safety distance from stop line that the driver desired) justified in the range from (2.86sec) to (2.17 sec) indicated a good match to reflect the actual traffic behavior for urban traffic streets. A good indication of the convergence between simulat
... Show MoreThis study is concerned with organizational learning and its impact on total quality management in the education sector. Organizational learning is a process that provides the educational sector with the ability to adapt and respond rapidly to developments and changes in a better way according to its main dimensions (Mental Models, Personal Mastery, Team Learning, Shared Vision, System Thinking) by adopting the philosophy of Total Quality Management (TQM) in accordance with its basic dimensions (leadership, customer satisfaction, participation of workers, continuous improvement, training and education). The main purpose of this study is to know (the impact of the Senge model of organizational learni
... Show MoreIn this research Bi2S3 thin films have been prepared on glass substrates using chemical spray pyrolysis method at substrate temperature (300oC) and molarity (0.015) mol. Structural and optical properties of the thin films above have been studied; XRD analysis demonstrated that the Bi2S3 films are polycrystalline with (031) orientation and with Orthorhombic structure. The optical properties were studied using the spectral of the absorbance and transmission of films in wavelength ranging (300-1100) nm. The study showed that the films have high transmission within the range of the visible spectrum. Also absorption coefficient, extinction coefficient and the optical energy gap (Eg) was calculated, found that the film have direct ener
... Show MoreThe research aims to identify the extent to which Iraqi private banks practice profit management motivated by reducing the taxable base by increasing the provision for loan losses by relying on the LLP it model, which consists of a main independent variable (net profit before tax) and independent sub-variables (bank size, total debts to total equity, loans granted to total obligations) under the name of the variables governing the banking business. (Colmgrove-Smirnov) was used to test the normal distribution of data for all banks during the period 2017-2020, and then find the correlation between the main independent variable sub and the dependent variable by means of the correlation coefficient person, and then using the multiple
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show More