Estimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate linear parameters which represents amplitude . solve non-linear equations using Newton –Raphson method in sequential non-linear least squares method and obtain parameters estimate that represents frequencies and linear parameters which represents amplitude at the same time, and compared this method with sequential robust M method when the signal affected by different types of noise including the normal distribution of the error and the heavy-tailed distributions error, numerical simulation are performed to observe the performance of the estimation methods for different sample size, and various level of variance using a statistical measure of mean square error (MSE), we conclude in general that sequential non-linear least squares method is more efficiency compared to others if we follow the normal and logistic distribution of noise, but if the noise follow Cauchy distribution it was a sequential robust M method based on bi-square weight function is the best in the estimation.
The aim of this paper is to present a method for solving of system of first order initial value problems of ordinary differential equation by a semi-analytic technique with constructing polynomial solutions for decreasing dangers of lead. The original problem is concerned using two-point osculatory interpolation with the fit equals numbers of derivatives at the end points of an interval [0 , 1].
Three-dimensional (3D) reconstruction from images is a most beneficial method of object regeneration by using a photo-realistic way that can be used in many fields. For industrial fields, it can be used to visualize the cracks within alloys or walls. In medical fields, it has been used as 3D scanner to reconstruct some human organs such as internal nose for plastic surgery or to reconstruct ear canal for fabricating a hearing aid device, and others. These applications need high accuracy details and measurement that represent the main issue which should be taken in consideration, also the other issues are cost, movability, and ease of use which should be taken into consideration. This work has presented an approach for design and construc
... Show MoreIn this paper the method of singular value decomposition is used to estimate the ridge parameter of ridge regression estimator which is an alternative to ordinary least squares estimator when the general linear regression model suffer from near multicollinearity.
Samarium ions (Sm +3), a rare-earth element, have a significant optical emission within the visible spectrum. PMMA samples, mixed with different ratios of SmCl3.6H2O, were prepared via the casting method. The composite was tested using UV-visible, photoluminescence and thermogravimetric analysis (TGA). The FTIR spectrometry of PMMA samples showed some changes, including variation in band intensity, location, and width. Mixed with samarium decreases the intensity of the CO and CH2 stretching bands and band position. A new band appeared corresponding to ionic bonds between samarium cations with negative branches in the polymer. These variations indicate complex links between the Sm +3 ion and oxygen in the ether group. The optical absorption
... Show MoreBackground: Machine learning relies on a hybrid of analytics, including regression analyses. There have been no attempts to deploy a sinusoidal transformation of data to enhance linear regression models.
Objectives: We aim to optimize linear models by implementing sinusoidal transformation to minimize the sum of squared error.
Methods: We implemented non-Bayesian statistics using SPSS and MatLab. We used Excel to generate 30 trials of linear regression models, and each has 1,000 observations. We utilized SPSS linear regression, Wilcoxon signed-rank test, and Cronbach’s alpha statistics to evaluate the performance of the optimization model. Results: The sinusoidal
In the present investigation two different types of fiber reinforced polymer composites were prepared by hand lay-up method using three different parameters (curing temperature, pressing load and fiber volume fraction). These composites were prepared from the polyester resin as the matrix material reinforced with glass fibers as first group of samples and mat Kevlar fibers as the second group, both with different volume fractions (4%, 8%, and 12%) of fibers. They were then tested by tensile strength and impact strength. The main objective in this study is to use Taguchi method for predicting the better parameters that give the better tensile and impact strength to the composites, and then preparing composites at
... Show MoreA modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify the va
... Show MoreThis study focuses on the implementation of interfaces for human machine interaction (HMI) control and monitor automatic production line. The automatic production line can performance feeding, transportation, sorting functions. The objectives of this study are implemented two SCADA/HMI system using two different software. TIA portal software is used to build HMI, alarm, and trends in touch panel which is helped an operator to control and monitor the production line. LabVIEW software is used to build HMI and trends in the computer screen and is linked with Microsoft Excel (ME) to generate information table helped to monitor the performance of the pneumatic equipment. The production line can do performance feeding, transportation, sorting fun
... Show More
This work focuses on the implementation of interfaces for human machine interaction (HMI) for control and monitor of automatic production line. The automatic production line which can performance feeding, transportation, sorting functions.
The objectives of this work are implemented two SCADA/HMI system using two different software. TIA portal software was used to build HMI, alarm, and trends in touch panel which are helped the operator to control and monitor the production line. LabVIEW software was used to build HMI and trends on the computer screen and was linked with Micros
... Show More