Preferred Language
Articles
/
jeasiq-1841
Alternative security solutions offered by virtual private network vpn model proposal to use alternatives to Cisco and Microsoft security in al-rasheed bank-delegate general office- northern region
...Show More Authors

The study aims to provide a Suggested model for the application of Virtual Private Network is a tool that used to protect the transmitted data through the Web-based information system, and the research included using case study methodology in order to collect the data about the research area ( Al-Rasheed Bank) by using Visio to design and draw the diagrams of the suggested models and adopting the data that have been collected by the interviews with the bank's employees, and the research used the modulation of data in order to find solutions for the research's problem.

The importance of the study Lies in dealing with one of the vital topics at the moment, namely, how to make the information transmitted via information systems celebrating safety, which is missed by many organizations, despite its importance, and providing the means for the protection and safety of the information transmitted from the center to the branches and back again to the center.

In order to achieve the goals of the study, we build the suggested model, by using the  Virtual Private Network through Cisco and Microsoft suggested models, The study concludes a set of conclusions, the most important, adopt a proposed model to use Virtual Private Network, whether the model presented by Cisco or through the application form provided by Microsoft.

In light of the findings, the study concluded a set of including, adopting the model of Microsoft Virtual Private Network due to the easy to apply using the infrastructure of the bank as tubeless to special equipment.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Private Financial Institutions and their Role in the Development of Small and Medium sized Enterprises in Iraq
...Show More Authors

the reality of small and medium enterprises analysis reflects weaknesses plaguing these enterprises and strengths that are characterized by, and thus the formulation of appropriate solutions to the obstacles faced by these enterprises to enhance its contribution to the achievement of economic and social development. Iraqi small and medium enterprises suffer from several obstacles stand in front of development and  support their competitiveness, the finance one of the main obstacles which impede growth and development of these enterprises, noting the banking system in Iraq reluctance to lend to small and medium-sized enterprises, as a result of the high cost of lending these enterprises compared to large projects, as well as

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Building a mathematical model for measuring and analyzing the general equilibrium in the Iraqi economy through the IS-lm-BP model
...Show More Authors

In order to achieve overall balance in the economy to be achieved in different markets and at one time (market commodity, monetary and labor market and the balance of payments and public budget), did not provide yet a model from which to determine the overall balance in the economy and the difficulty of finding the inter-relationship between all these markets and put them applied in the form of allowing the identification of balance in all markets at once.

One of the best models that have dealt with this subject is a model
(LM-BP-IS), who teaches balance in the commodity market and money market and balance of payments and the importance of this issue This research tries to shed light on the reality

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Reduction of the error in the hardware neural network
...Show More Authors

Specialized hardware implementations of Artificial Neural Networks (ANNs) can offer faster execution than general-purpose microprocessors by taking advantage of reusable modules, parallel processes and specialized computational components. Modern high-density Field Programmable Gate Arrays (FPGAs) offer the required flexibility and fast design-to-implementation time with the possibility of exploiting highly parallel computations like those required by ANNs in hardware. The bounded width of the data in FPGA ANNs will add an additional error to the result of the output. This paper derives the equations of the additional error value that generate from bounded width of the data and proposed a method to reduce the effect of the error to give

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Nov 27 2022
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Extent of auditors' commitment to the quality control system according to the Iraqi Audit guide / 7 : A field study of a sample of auditors of the second district audit office In the The Federal Financial Supervision Board
...Show More Authors

The research aims to achieve a set of objectives, the most important of which is determining the extent to which the auditors of the research sample in the Federal Bureau of Financial Supervision adhere to the requirements of the quality control system according to the Iraqi Audit Manual No. The federal financial / research sample with the quality control system according to the Iraqi audit guide No. 7), and the researcher seeks to test the main research hypothesis and sub-hypotheses, and to achieve this, a questionnaire was designed by (Google Form) and distributed electronically to the elements of the research sample, Through the statistical package program (SPSS), the results of the questionnaire were analysed. In light of the applied

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (9)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Lecture Notes In Networks And Systems
Advanced Security Technique in Presence of Open Communication System and Cyber Era
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Fri Mar 31 2023
Journal Name
Wasit Journal Of Computer And Mathematics Science
Security In Wireless Sensor Networks Based On Lightweight Algorithms : An Effective Survey
...Show More Authors

At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena

... Show More
View Publication
Crossref
Publication Date
Mon Nov 03 2025
Journal Name
Al-rafidain University College For Sciences
Use GARCH model to predict the stock market index, Saudi Arabia
...Show More Authors

In this paper has been building a statistical model of the Saudi financial market using GARCH models that take into account Volatility in prices during periods of circulation, were also study the effect of the type of random error distribution of the time series on the accuracy of the statistical model, as it were studied two types of statistical distributions are normal distribution and the T distribution. and found by application of a measured data that the best model for the Saudi market is GARCH (1,1) model when the random error distributed t. student's .

View Publication Preview PDF