Preferred Language
Articles
/
jeasiq-1824
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous variables (GARCHX) are applied to analyze and capture the volatility that occurs in the conditional variance of a linear model. Since time series observations rarely have linear or nonlinear components in nature or usually included together. Therefore, the main purpose of this paper is to employ the hybrid model technique according to Zhang methodology for hybrid models to combine the linear forecasts of the best linear model of ARMAX models and the nonlinear forecasts of the best nonlinear models of (ARCH, GARCH & GARCHX) models and thus increase the efficiency and accuracy of performance forecasting future values of the time series.

This paper is concerned with the modeling and building of the hybrid models (ARMAX-GARCH) and (ARMAX-GARCHX), assuming three different random error distributions: Gaussian distribution, Student-t distribution, as well as the general error distribution and the last two distributions were applied for the purpose of capturing the characteristics of heavy tail distributions which have a Leptokurtic characteristic compared to the normal distribution. This research adopted a modern methodology in estimating the parameters of the hybrid model namely the (two-step procedure) methodology. In the first stage, the parameters of the linear model were estimated using three different methods: The Ordinary Least Squares method (OLS), the Recursive Least Square Method with Exponential Forgetting Factor (RLS-EF), and the Recursive Prediction Error Method (RPM). In the second stage, the parameters of the nonlinear model were estimated using the MLE method and employing the numerical improvement algorithm (BHHH algorithm).

 

 

 

The hybrid models have been applied for modeling the relationship between the exogenous time series represented by the exchange rate and the endogenous time series represented by the unemployment rate in the USA for the period from (January 2000 to December 2017 i.e. 216 observations), and also the out-of-sample forecasts of unemployment rate in the last twelve values of (2018). The forecasting performance of the hybrid models and the competing individual model was also evaluated using the loss function accuracy measures (MAPE), (MAE), and the robust (Q-LIKE). Based on statistical measurements, the results showed the hybrid models improved the accuracy and efficiency of the single model. () hybrid model error whose conditional variance follows a GED distribution is the optimal model in modeling the bivariate time series data under study and more efficient in the forecasting process compared with the individual model and the hybrid model. This is due to having the lowest values for accuracy measures. Different software packages (MATLAB (2018a), SAS 9.1, R 3.5.2 and EViews 9) were used to analyze the data under consideration.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
The Iraqi Postgraduate Medical Journal
Is It Reasonable to Screen for Undiagnosed Diabetes and Prediabetes in Asymptomatic Individuals? A Sample from Baghdad
...Show More Authors

BACKGROUND: Diabetes Mellitus is a complex chronic illness that has increased significantly around the world and is expected to affect 628 million in 2045. Undiagnosed type 2 diabetes may affect 24% - 62% of the people with diabetes; while the prevalence of prediabetes is estimated to be 470 million cases by 2030. AIM OF STUDY: To find the percentage of undiagnosed diabetes and prediabetes in a slice of people aged ≥ 45years, and relate it with age, gender, central obesity, hypertension, and family history of diabetes. METHODS: A cross sectional study that included 712 healthy individuals living in Baghdad who accepted to take part in this study and fulfilling the inclusion and exclusion criteria.

... Show More
Publication Date
Mon Jan 13 2020
Journal Name
Day 3 Wed, January 15, 2020
Numerical Simulation of Gas Lift Optimization Using Genetic Algorithm for a Middle East Oil Field: Feasibility Study
...Show More Authors
<p>Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t</p> ... Show More
View Publication
Scopus (15)
Crossref (8)
Scopus Crossref
Publication Date
Fri Jul 27 2012
Journal Name
Journal Of Prosthodontics
A Three-Dimensional Finite Element Analysis for Overdenture Attachments Supported by Teeth and/or Mini Dental Implants
...Show More Authors

View Publication
Crossref (14)
Crossref
Publication Date
Sat Jun 19 2021
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Serum Chitotriosidase level as a Novel Biomarker for Therapeutic Monitoring of Nephropathic Cystinosis among the Iraqi children
...Show More Authors

Background: Cystinosis is a rare autosomal recessive lysosomal storage disease with high morbidity and mortality. It is caused by mutations in the CTNS gene that encodes the cystine transporter, cystinosin, which leads to lysosomal cystine accumulation. It is the major cause of inherited Fanconi syndrome, and should be suspected in young children with failure to thrive and signs of renal proximal tubular damage. The diagnosis can be missed in infants, because not all signs of renal Fanconi syndrome are present during the first months of life. Elevated white blood cell cystine content is the cornerstone of the diagnosis. Since chitotriosidase (CHIT1 or chitinase-1) is mainly produced by activated macrophages both in normal and inflammator

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jan 30 2025
Journal Name
Iraqi Journal Of Science
Development of A New Colorimetric-Flow System Approach for The Determination of Cefotaxime Sodium in Pharmaceutical Formulations
...Show More Authors

     A new colorimetric-flow injection method has been developed and validated for the detection of Cefotaxime sodium in pharmaceutical formulations. This method stands out for its rapid and sensitive nature. The formation of a brown-colored complex between Cefotaxime sodium and the Biuret reagent in a highly alkaline environment serves as the basis for the detection. The intensity of this colored complex is measured using a custom-built Continuous Flow Injection Analyzer, enabling accurate quantification of Cefotaxime sodium. Optimization studies of the chemical and physical parameters such as dilution of Biuret reagent, effect of the medium basicity, flow rate, sample loop and others have been investigated. The calibration gra

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Jun 25 2020
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn: 1683 - 3597 , E-issn : 2521 - 3512)
Evaluating the Clinical Outcomes of Three Medication Regimens for Treating a Sample of Iraqi Persistent Asthmatic patients
...Show More Authors

Abstract     Asthma is a complex disease defined by chronic airway inflammation and airflow limitation causing variable respiratory symptoms which include shortness of breath (SOB), wheezing, chest tightness and cough. Asthma guidelines advocate adding a second long acting bronchodilator to medium doses of inhaled corticosteroids (ICS) rather using high doses of ICS alone to control moderate to severe persistent asthma. The aim of this study was to evaluate the clinical outcomes of three medication regimens indicated for Iraqi patients suffering from persistent asthma.      This study was interventional randomized clinical study conducted on a sample of adult Iraqi asthmatic patients in Baghdad City. The study com

... Show More
Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison between Methods of Laplace Estimators and the Robust Huber for Estimate parameters logistic regression model
...Show More Authors

The logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .                                                

The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result.    &nbs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
The role of investment climate indicators in stimulating economic growth: a standard study For Malaysia 1990-2016
...Show More Authors

In globalization, the world became open area to competition for the attractive of investment, and the abilities of each country to win the confidence of investors depend upon the preparation to optimize circumstances.   The competitiveness is an essential means of expanding the capacity of developed to coexist in an international environment characterized by globalization. While competition describes the market structure, the behavior of investors and business, competitiveness is interested in the evaluation of business performance or countries and compare them in the conditions of competition available in these markets. Regarding Malaysia, which is depend on FDI-Export- Led Growth strategy,  it has taking on diffe

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A comparative study of Gaussian mixture algorithm and K-means algorithm for efficient energy clustering in MWSN
...Show More Authors

Wireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Crossref