Preferred Language
Articles
/
jeasiq-1824
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous variables (GARCHX) are applied to analyze and capture the volatility that occurs in the conditional variance of a linear model. Since time series observations rarely have linear or nonlinear components in nature or usually included together. Therefore, the main purpose of this paper is to employ the hybrid model technique according to Zhang methodology for hybrid models to combine the linear forecasts of the best linear model of ARMAX models and the nonlinear forecasts of the best nonlinear models of (ARCH, GARCH & GARCHX) models and thus increase the efficiency and accuracy of performance forecasting future values of the time series.

This paper is concerned with the modeling and building of the hybrid models (ARMAX-GARCH) and (ARMAX-GARCHX), assuming three different random error distributions: Gaussian distribution, Student-t distribution, as well as the general error distribution and the last two distributions were applied for the purpose of capturing the characteristics of heavy tail distributions which have a Leptokurtic characteristic compared to the normal distribution. This research adopted a modern methodology in estimating the parameters of the hybrid model namely the (two-step procedure) methodology. In the first stage, the parameters of the linear model were estimated using three different methods: The Ordinary Least Squares method (OLS), the Recursive Least Square Method with Exponential Forgetting Factor (RLS-EF), and the Recursive Prediction Error Method (RPM). In the second stage, the parameters of the nonlinear model were estimated using the MLE method and employing the numerical improvement algorithm (BHHH algorithm).

 

 

 

The hybrid models have been applied for modeling the relationship between the exogenous time series represented by the exchange rate and the endogenous time series represented by the unemployment rate in the USA for the period from (January 2000 to December 2017 i.e. 216 observations), and also the out-of-sample forecasts of unemployment rate in the last twelve values of (2018). The forecasting performance of the hybrid models and the competing individual model was also evaluated using the loss function accuracy measures (MAPE), (MAE), and the robust (Q-LIKE). Based on statistical measurements, the results showed the hybrid models improved the accuracy and efficiency of the single model. () hybrid model error whose conditional variance follows a GED distribution is the optimal model in modeling the bivariate time series data under study and more efficient in the forecasting process compared with the individual model and the hybrid model. This is due to having the lowest values for accuracy measures. Different software packages (MATLAB (2018a), SAS 9.1, R 3.5.2 and EViews 9) were used to analyze the data under consideration.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Aug 01 2024
Journal Name
Water Practice & Technology
Artificial neural network and response surface methodology for modeling oil content in produced water from an Iraqi oil field
...Show More Authors
ABSTRACT<p>The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value &lt;0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe</p> ... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Dec 31 2018
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
ESTIMATION OF ELLAGIC ACID ACTIVITY WHEN MIXED WITH SOME TYPES OF CANDY AGAINST Streptococcus mutans ISOLATED FROM ADULT PATIENTS IN BAGHDAD CITY: ESTIMATION OF ELLAGIC ACID ACTIVITY WHEN MIXED WITH SOME TYPES OF CANDY AGAINST Streptococcus mutans ISOLATED FROM ADULT PATIENTS IN BAGHDAD CITY
...Show More Authors

Microbial activity of Ellagic acid when mixed with some types of candy toward Streptococcus mutans microorganism was studied. The main purpose of carrying out this study is to produce a new type of candy that contains Ellagic acid in addition to xylitol instead of sucrose to prevent dental caries. The results show that the inhibitory action of Ellagic acid was more effective when mixed with this type of candy for the purpose of reducing Streptococcus mutans microorganisms, while sensory evaluation was applied in this study to 20 volunteers to that candy sample evaluated which contain (5 mg/ml) Ellagic acid with 100g xylitol to determine consumers acceptability of this sample of candy. The results were expressed as mean value, slandered d

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Effect of Microwave Treatment in Graphite Anode for Microbial Fuel Cell and Its Application in Biosensor
...Show More Authors

The electrode in the microbial fuel cell has a significant effect on cell performance. The treatment of the electrode is a crucial step to make the electrode surface more habitable for bacteria growth, thus, increases the power production as well as waste treatment. In the current study, two graphite electrodes were treated by a microwave. The first electrode was treated with 100W microwave energy, while the second one was treated with 600W microwave energy. There is a significant enhancement in the surface of the graphite anode after the pretreatment process. The results show an increase in the power density from 10 mW/m2 to 15 mW/m2 with 100w treatment and to 13.47 mW/m2 with 600w treatment. An organic

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Application of Microwave Technology in Demulsification of Water-in-Oil Emulsion for Missan Oil Fields
...Show More Authors

A series of batch demulsification runs were carried out to evaluate the final emulsified water content of emulsion samples after the exposure to microwave. An experimental study was conducted to evaluate the effects of a set of operating variables on the demulsification performance. Several microwave irradiation demulsification runs were carried out at different irradiation powers (700, 800, and 900 watt), using water-in-oil emulsion samples containing different water contents (20-80%, 30-70%, and 50-50%) and salt contents (10000, 20000, and 30000 ppm). It was found that the best separation efficiency was obtained at 900watt, 50% water content and 160 s of irradiation time. Experimental results showed that microwave radiation method can

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 31 2020
Journal Name
Iraqi Geological Journal
APPLICATION OF TRIANGLES METHOD FOR QUANTITATIVE ESTIMATION OF MARL RESERVE IN EUPHRATES FORMATION, MIDDLE OF IRAQ
...Show More Authors

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Oct 17 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha

... Show More
Preview PDF
Publication Date
Sun Oct 29 2023
Journal Name
Iraqi Journal Of Agricultural Sciences
ROLE OF ORGANIC FERTILIZER AND BORON FOLIAR APPLICATION ON GROWTH AND PRODUCTIVITY OF POTATO FOR PROCESSING
...Show More Authors

This research was carried out at University of Baghdad - College of Agricultural Engineering Sciences during the fall season of 2020 and spring season of 2021 in order to evaluate the effect of organic fertilizer and the foliar application of boron on the growth and yield of industrial potatoes (Solanum tuberosum L.). Using factorial experiment (5*4) within Randomized Complete Block Design  with three replicates, the organic fertilizer (palm fronds peat) was applied at four levels (0, 12, 24, and 36 ton ha-1) in addition to the treatment of the recommended of chemical fertilizer. The foliar application of Boron was applied at four concentrations which were 0, 100, 150 and 200 mg (H3Bo3). L-1. The results Revealed a significant incr

... Show More
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Computer Model Application for Sorting and Grading Citrus Aurantium Using Image Processing and Artificial Neural Network
...Show More Authors
Abstract<p>This study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 01 2013
Journal Name
Baghdad Science Journal
Construction of New Ion Selective Electrodes for Determination Fe(III) and Their Application in Pharmaceutical samples
...Show More Authors

Liquid membrane electrodes for the determination iron(III) were constructed based on chloramphenicol sodium succinate and iron(III) CPSS-Fe(III) as ion pair complex, with four plasticizers Di-butyl phosphate (DBP); Di-butyl phthalate (DBPH); Di-octyl phthalate (DOP); Tri-butyl phosphate (TBP); in PVC matrix . These electrodes give Nernstian and sub-Nernstian slopes (19.79, 24.60, 16.01 and 13.82mV/decade) and linear ranges from (1x10-5-1x10-2 M, 1x10-5-1x10-2 M, 1x10-6-1x10-2 M and 1x10-5-1x10-2 M) respectively. The best electrode was based on DBP plasticizer which gave a slope 19.79 mV/decade, correlation coefficient 0.9999, detection limit of 9×10-6 M, lifetime 37 day displayed good stability and reproducibility and used to determine

... Show More
View Publication Preview PDF
Crossref