Preferred Language
Articles
/
jeasiq-1795
Comparing Different Estimators for the shape Parameter and the Reliability function of Kumaraswamy Distribution
...Show More Authors

In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes estimators derived under the squared error loss function. We conduct simulation study, to compare the performance for each estimator, several values of the shape parameter (θ) from Kumaraswamy distribution for data-generating, for different samples sizes (small, medium, and large). Simulation results have shown that the Best method is the Bayes estimation according to the smallest values of mean square errors(MSE) for all samples sizes (n).

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Nov 18 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Comparison Between Standard Bayes Estimators of the Reliability Function of Exponential Distribution
...Show More Authors

   In this paper, a Monte Carlo Simulation technique is used to compare the performance of the standard Bayes estimators of the reliability function of the one parameter exponential distribution .Three types of loss functions are adopted, namely, squared error  loss function (SELF) ,Precautionary error loss function (PELF) andlinear exponential error  loss function(LINEX) with informative and non- informative prior .The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Estimation of the parameter of the Pareto distribution manual Using the general mediator estimator
...Show More Authors

Estimation of the tail index parameter of a one - parameter Pareto model has wide important by the researchers because it has awide application in the econometrics science and reliability theorem.

Here we introduce anew estimator of "generalized median" type and compare it with the methods of Moments and Maximum likelihood by using the criteria, mean square error.

 The estimator of generalized median type performing best over all.

View Publication Preview PDF
Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimation of the Reliability Function of Basic Gompertz Distribution under Different Priors
...Show More Authors

In this paper, some estimators for the reliability function R(t) of Basic Gompertz (BG) distribution have been obtained, such as Maximum likelihood estimator, and Bayesian estimators under General Entropy loss function by assuming non-informative prior by using Jefferys prior and informative prior represented by Gamma and inverted Levy priors. Monte-Carlo simulation is conducted to compare the performance of all estimates of the R(t), based on integrated mean squared.

View Publication Preview PDF
Crossref
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Comparison Between the MLE and Standard Bayes Estimators of the Reliability Function of Exponential Distribution
...Show More Authors

     In this paper, a Monte Carlo Simulation technique is used to compare the performance of MLE and the standard Bayes estimators of the reliability function of the one parameter exponential distribution.Two types of loss functions are adopted, namely, squared error  loss function (SELF) and modified square error loss function (MSELF) with informative and non- informative prior. The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators .

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Best estimation for the Reliability of 2-parameter Weibull Distribution
...Show More Authors

This Research Tries To Investigate The Problem Of Estimating The Reliability Of Two Parameter Weibull Distribution,By Using Maximum Likelihood Method, And White Method. The Comparison Is done Through Simulation Process Depending On Three Choices Of Models (?=0.8 , ß=0.9) , (?=1.2 , ß=1.5) and (?=2.5 , ß=2). And Sample Size n=10 , 70, 150 We Use the Statistical Criterion Based On the Mean Square Error (MSE) For Comparison Amongst The Methods.

View Publication Preview PDF
Crossref
Publication Date
Thu Aug 25 2016
Journal Name
International Journal Of Mathematics Trends And Technology
Pretest Single Stage Shrinkage Estimator for the Shape Parameter of the Power Function Distribution
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Wed Apr 08 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Bayes estimators for reliability and hazard function of Rayleigh-Logarithmic (RL) distribution with application
...Show More Authors

In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application

Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for the Parameters and Reliability Function of Basic Gompertz Distribution under Squared Log Error Loss Function
...Show More Authors

In this paper, some estimators for the unknown shape parameters and reliability function of Basic Gompertz distribution were obtained, such as Maximum likelihood estimator and some Bayesian estimators under Squared log error loss function by using Gamma and Jefferys priors. Monte-Carlo simulation was conducted to compare the performance of all estimates of the shape parameter and Reliability function, based on mean squared errors (MSE) and integrated mean squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate the results that are summarized in tables.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Comparison Different Estimation Method for Reliability Function of Rayleigh Distribution Based On Fuzzy Lifetime Data
...Show More Authors

    In this study, we present different methods of estimating fuzzy reliability of a two-parameter Rayleigh distribution via the maximum likelihood estimator, median first-order statistics estimator, quartile estimator, L-moment estimator, and mixed Thompson-type estimator. The mean-square error MSE as a measurement for comparing the considered methods using simulation through different values for the parameters and unalike sample sizes is used. The results of simulation show that the fuzziness values are better than the real values for all sample sizes, as well as  the fuzzy reliability at the estimation  of the Maximum likelihood Method, and Mixed Thompson Method perform better than the other methods in the sense of MSE, so that

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of the Suggested loss Function with Generalized Loss Function for One Parameter Inverse Rayleigh Distribution
...Show More Authors

The experiences in the life are considered important for many fields, such as industry, medical and others. In literature, researchers are focused on flexible lifetime distribution.

In this paper, some Bayesian estimators for the unknown scale parameter  of Inverse Rayleigh Distribution have been obtained, of different two loss functions, represented by Suggested and Generalized loss function based on Non-Informative prior using Jeffery's and informative prior represented by Exponential distribution. The performance of   estimators is compared empirically with Maximum Likelihood estimator, Using Monte Carlo Simulation depending on the Mean Square Error (MSE). Generally, the preference of Bayesian method of Suggeste

... Show More
View Publication Preview PDF