The survival analysis is one of the modern methods of analysis that is based on the fact that the dependent variable represents time until the event concerned in the study. There are many survival models that deal with the impact of explanatory factors on the likelihood of survival, including the models proposed by the world, David Cox, one of the most important and common models of survival, where it consists of two functions, one of which is a parametric function that does not depend on the survival time and the other a nonparametric function that depends on times of survival, which the Cox model is defined as a semi parametric model, The set of parametric models that depend on the time-to-event distribution parameters such as Exponential Model, Weibull Model, Log-logistic Model. Our research aims to adopt some of the Bayesian Optimal Criteria in achieving optimal design to estimate the optimal survival time for patients with myocardial infarction by constructing a parametric survival model based on the probability distribution of the survival times of myocardial infarction patients, which is among the most serious diseases that threaten human life and the main cause of death all over the world, as the duration of survival of patients with myocardial infarction varies with the factor or factors causing the injury, there are many factors that lead to the disease such as diabetes, high blood pressure, high cholesterol, psychological pressure and obesity. Therefore, the need to estimate the optimal survival time was expressed by constructing a model of the relationship between the factors leading to the disease and the patient survival time, and we found that the optimal rate of survival time is 18 days.
In this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.
Abstract:
The models of time series often suffer from the problem of the existence of outliers that accompany the data collection process for many reasons, their existence may have a significant impact on the estimation of the parameters of the studied model. Access to highly efficient estimators is one of the most important stages of statistical analysis, And it is therefore important to choose the appropriate methods to obtain good estimators. The aim of this research is to compare the ordinary estimators and the robust estimators of the estimation of the parameters of
... Show MoreThe compressive residual stresses generated by shot peening, is increased in a direct proportional way with shot peening time (SPT). For each metal, there is an optimum shot peening time (O.S.T) which gives the optimum fatigue life. This paper experimentally studied to optimize shot peening time of aluminium alloy 6061-T651 as well as using of and analysis of variance (ANOVA).
Two types of fatigue test specimens’ configuration were used, one without notch (smooth) and the other with a notch radius (1,25mm), each type was shot peened at different time. The (O.S.T) was experimentally estimated to be 8 minutes reaching the surface stresses at maximum peak of -184.94 MPa.
A response surface methodology (RSM) is presen
... Show MoreAbstract:
This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.
The comparison was done by simulation using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood with sample size (n = 30) is the best to represent the maternal mortality data after it has been reliance value param
... Show MoreIn this research, we find the Bayesian formulas and the estimation of Bayesian expectation for product system of Atlas Company. The units of the system have been examined by helping the technical staff at the company and by providing a real data the company which manufacturer the system. This real data include the failed units for each drawn sample, which represents the total number of the manufacturer units by the company system. We calculate the range for each estimator by using the Maximum Likelihood estimator. We obtain that the expectation-Bayesian estimation is better than the Bayesian estimator of the different partially samples which were drawn from the product system after it checked by the
... Show MoreAbstract:
Robust statistics Known as, resistance to errors caused by deviation from the stability hypotheses of the statistical operations (Reasonable, Approximately Met, Asymptotically Unbiased, Reasonably Small Bias, Efficient ) in the data selected in a wide range of probability distributions whether they follow a normal distribution or a mixture of other distributions deviations different standard .
power spectrum function lead to, President role in the analysis of Stationary random processes, form stable random variables organized according to time, may be discrete random variables or continuous. It can be described by measuring its total capacity as function in frequency.
<
... Show More
In this article we study a single stochastic process model for the evaluate the assets pricing and stock.,On of the models le'vy . depending on the so –called Brownian subordinate as it has been depending on the so-called Normal Inverse Gaussian (NIG). this article aims as the estimate that the parameters of his model using my way (MME,MLE) and then employ those estimate of the parameters is the study of stock returns and evaluate asset pricing for both the united Bank and Bank of North which their data were taken from the Iraq stock Exchange.
which showed the results to a preference MLE on MME based on the standard of comparison the average square e
... Show MoreThe Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimati
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the
... Show More